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a b s t r a c t

We study the connection between the additive structure of a finite
set A ⊂ Z and the measure of large values of the modulus of a
trigonometric sum.
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1. Introduction

Let Z be the ring of integers, R the field of real numbers, T = R/Z,

e(α) = e2π iα, i =
√

−1, [a, b] = {a, a + 1, . . . , b}, a, b ∈ Z, a < b.

For a set A ⊂ Z, |A| = card(A) denotes the number of elements of A and ℓ(A) = max A − min A.
Denote

SA(α) =


a∈A

e(αa), α ∈ T,

E(A, λ|A|) = {α ∈ T : |SA(α)| ≥ λ|A|},

and

µ∗

λ(m) = sup {mes E(A, λm) : A ⊂ Z, |A| = m, ℓ(A) ≤ 2m} .

In this paper, we study the following problem: find the set A for whichmes E(A, λ|A|) has themaximal
value assuming that |A| is given and A lies in a ‘‘short’’ interval.

The problem has a rather long history (see [6,4,9,12]). Connections of this theme with problems
of probability theory, harmonic analysis and coding theory are shown in [12,11,8,2]. Results in this
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direction can also be found in [5,1,3]. There exists very strong connections of this field with Roth’s
three-term arithmetic progression problem [9, pp. 140–142].

In this paper, we shall prove the following.

Theorem 1. Let A ⊂ [−N,N], |A| = k ≥ N + 1, where N is a sufficiently large integer. Then for
λ ≥

2
√
2

π
= 0.90032,2 the value µ∗(|A|) is attained if and only if A is an arithmetic progression.

Let us stress that the conditions of Theorem 1 imply that the difference of the corresponding
arithmetic progression A is equal to 1, and only in the case k = N + 1 is equal to 1 or 2.

An example: if |A| = N + 1, then

µ∗(N + 1) = mes


α ∈ T :

 N
a=0

e(αa)

 ≥
2
√
2

π
(N + 1)


=

2θ
N + 1

+ O


1
N3


,

where θ is a solution of the equation

sinπθ

πθ
=

2
√
2

π
,

so that

πθ = 0.775.

Let us review existing results in more detail and comment on some existing and possible
applications.

The problem of finding the maximal measure µmax = supA µ for sets of α for which |SA(α)| is
bigger than some given number which is less than the trivial estimate equal to k, and of finding the
sets Awith this property was first formulated in [9, p. 144].

The case when

|SA(α)| ≥ (1 − ε)|A|

and ε = o(1) was treated by A. A. Yudin in [12].
The case when ε is some positive constant was studied by A. Besser in [2]. However, the constant

achieved turned out to be very small

ε =

1
20000


, and attempts at further progress encounteredmajor

technical difficulties.
This is why in [5] it was proposed to add an additional condition and to study only those sets

included in a segment that is not too long.
Let us now describe a connection with problems of information transfer. The code word (ε0,

ε1, . . . , εn−1), where εi ∈ {+1, −1} for all i, is transmitted with the aid of a signal

Fn(t) =

n−1
j=0

εie(jt).

Technical conditions ask that the value

max
t∈T

|Fn(t)|

be as small as possible.
We have

Fn(t) = 2


k:εk=1

e(kt) − Dn(t),

2 The result stated here for λ = 0.90032 is in fact valid for λ = 0.75. This last result was obtained by means of computations
too tedious to be included in this paper.

In general, the choice of the value of λ in the formulation of the theorem (in our case λ = 2
√
2/π ≈ 0.9) is determined by

the wish to balance between the strength of the result (smaller values of λ) and the complexity of the computations, which is
bigger for smaller values of λ.
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