On the measure of large values of the modulus of a trigonometric sum

Gregory A. Freiman ${ }^{\text {a }}$, Alexander A. Yudin ${ }^{\text {b, }}{ }^{1}$
${ }^{\text {a }}$ Department of Pure Mathematics, Faculty of Exact Sciences, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
${ }^{\mathrm{b}}$ Department of Mathematics, Vladimir Pedagogical University, 600024, Vladimir, Stroitelej St., h.11, Russia

ARTICLE INFO

Article history:

Available online 10 June 2013

A B S T R A C T

We study the connection between the additive structure of a finite set $A \subset \mathbb{Z}$ and the measure of large values of the modulus of a trigonometric sum.
© 2013 Published by Elsevier Ltd

1. Introduction

Let \mathbb{Z} be the ring of integers, \mathbb{R} the field of real numbers, $\mathbb{T}=\mathbb{R} / \mathbb{Z}$,

$$
e(\alpha)=e^{2 \pi i \alpha}, \quad i=\sqrt{-1}, \quad[a, b]=\{a, a+1, \ldots, b\}, \quad a, b \in \mathbb{Z}, a<b
$$

For a set $A \subset \mathbb{Z},|A|=\operatorname{card}(A)$ denotes the number of elements of A and $\ell(A)=\max A-\min A$. Denote

$$
\begin{aligned}
& S_{A}(\alpha)=\sum_{a \in A} e(\alpha a), \quad \alpha \in \mathbb{T}, \\
& E(A, \lambda|A|)=\left\{\alpha \in \mathbb{T}:\left|S_{A}(\alpha)\right| \geq \lambda|A|\right\},
\end{aligned}
$$

and

$$
\mu_{\lambda}^{*}(m)=\sup \{\operatorname{mes} E(A, \lambda m): A \subset \mathbb{Z},|A|=m, \ell(A) \leq 2 m\} .
$$

In this paper, we study the following problem: find the set A for which mes $E(A, \lambda|A|)$ has the maximal value assuming that $|A|$ is given and A lies in a "short" interval.

The problem has a rather long history (see [$6,4,9,12]$). Connections of this theme with problems of probability theory, harmonic analysis and coding theory are shown in [12,11,8,2]. Results in this

[^0]direction can also be found in [5,1,3]. There exists very strong connections of this field with Roth's three-term arithmetic progression problem [9, pp. 140-142].

In this paper, we shall prove the following.
Theorem 1. Let $A \subset[-N, N],|A|=k \geq N+1$, where N is a sufficiently large integer. Then for $\lambda \geq \frac{2 \sqrt{2}}{\pi}=0.90032,{ }^{2}$ the value $\mu^{*}(|A|)$ is attained if and only if A is an arithmetic progression.

Let us stress that the conditions of Theorem 1 imply that the difference of the corresponding arithmetic progression A is equal to 1 , and only in the case $k=N+1$ is equal to 1 or 2 .

An example: if $|A|=N+1$, then

$$
\mu^{*}(N+1)=\operatorname{mes}\left\{\alpha \in \mathbb{T}:\left|\sum_{a=0}^{N} e(\alpha a)\right| \geq \frac{2 \sqrt{2}}{\pi}(N+1)\right\}=\frac{2 \theta}{N+1}+O\left(\frac{1}{N^{3}}\right),
$$

where θ is a solution of the equation

$$
\frac{\sin \pi \theta}{\pi \theta}=\frac{2 \sqrt{2}}{\pi},
$$

so that

$$
\pi \theta=0.775
$$

Let us review existing results in more detail and comment on some existing and possible applications.

The problem of finding the maximal measure $\mu_{\max }=\sup _{A} \mu$ for sets of α for which $\left|S_{A}(\alpha)\right|$ is bigger than some given number which is less than the trivial estimate equal to k, and of finding the sets A with this property was first formulated in [9, p. 144].

The case when

$$
\left|S_{A}(\alpha)\right| \geq(1-\varepsilon)|A|
$$

and $\varepsilon=o(1)$ was treated by A. A. Yudin in [12].
The case when ε is some positive constant was studied by A. Besser in [2]. However, the constant achieved turned out to be very small $\left(\varepsilon=\frac{1}{20000}\right)$, and attempts at further progress encountered major technical difficulties.

This is why in [5] it was proposed to add an additional condition and to study only those sets included in a segment that is not too long.

Let us now describe a connection with problems of information transfer. The code word (ε_{0}, $\varepsilon_{1}, \ldots, \varepsilon_{n-1}$), where $\varepsilon_{i} \in\{+1,-1\}$ for all i, is transmitted with the aid of a signal

$$
F_{n}(t)=\sum_{j=0}^{n-1} \varepsilon_{i} e(j t) .
$$

Technical conditions ask that the value

$$
\max _{t \in \mathbb{T}}\left|F_{n}(t)\right|
$$

be as small as possible.
We have

$$
F_{n}(t)=2 \sum_{k: \varepsilon_{k}=1} e(k t)-D_{n}(t),
$$

[^1]
https://daneshyari.com/en/article/6424351

Download Persian Version:

https://daneshyari.com/article/6424351

Daneshyari.com

[^0]: E-mail address: grisha@post.tau.ac.il (G.A. Freiman).
 1 Deceased author.

[^1]: 2 The result stated here for $\lambda=0.90032$ is in fact valid for $\lambda=0.75$. This last result was obtained by means of computations too tedious to be included in this paper.

 In general, the choice of the value of λ in the formulation of the theorem (in our case $\lambda=2 \sqrt{2} / \pi \approx 0.9$) is determined by the wish to balance between the strength of the result (smaller values of λ) and the complexity of the computations, which is bigger for smaller values of λ.

