Conditional expanding bounds for two-variable functions over prime fields

Norbert Hegyvári ${ }^{\text {a }}$, François Hennecart ${ }^{\text {b }}$
${ }^{\text {a }}$ ELTE TTK, Eötvös University, Institute of Mathematics, H-1117 Pázmány st. 1/c, Budapest, Hungary
${ }^{\mathrm{b}}$ Université de Saint-Étienne, Institut Camille Jordan, 23, rue Michelon, 42023 Saint-Étienne, France

ARTICLE INFO

Article history:

Available online 14 June 2013

A B S TRACT

In this paper we provide in \mathbb{F}_{p} expanding lower bounds for two variables functions $f(x, y)$ in connection with the product set or the sumset. The sum-product problem has been immensely studied in the recent past. A typical result in \mathbb{F}_{p}^{*} is the existence of $\Delta(\alpha)>0$ such that if $|A| \asymp p^{\alpha}$ then

$$
\max (|A+A|,|A \cdot A|) \gg|A|^{1+\Delta(\alpha)}
$$

Our aim is to obtain analogous results for related pairs of twovariable functions $f(x, y)$ and $g(x, y)$: if $|A| \asymp|B| \asymp p^{\alpha}$ then

$$
\max (|f(A, B)|,|g(A, B)|) \gg|A|^{1+\Delta(\alpha)}
$$

for some $\Delta(\alpha)>0$.
© 2013 Elsevier Ltd. All rights reserved.

To Yahya

1. Introduction

We denote by \mathbb{F}_{p} the field with p elements and by $\mathbb{F}_{p}^{*}=\mathbb{F}_{p} \backslash\{0\}$ its multiplicative group. Expanding properties of functions in \mathbb{F}_{p}^{*} have been widely investigated in the last decade. If $A \subset \mathbb{F}_{p}$, we denote by $|A|$ its cardinality and write $|A| \asymp p^{\alpha}$ if $c_{1} p^{\alpha}<|A|<c_{2} p^{\alpha}$ for some fixed real numbers $0<c_{1}<c_{2}$. Throughout the paper we will use Vinogradov's symbol \gg in the following way: $X \gg Y$ means that there exists an absolute constant $\kappa>0$ such that $X \geq \kappa Y$ where X and Y are numbers generally depending on certain parameters as the prime number p, the subsets A, B, \ldots of \mathbb{F}_{p}.

For a given function $f(x, y)$ and two subsets A, B of \mathbb{F}_{p}^{*}, we denote

$$
f(A, B)=\{f(a, b):(a, b) \in A \times B\} .
$$

[^0]The sumset corresponds to the function $x+y$ and is denoted by $A+B$; the product-set corresponds to the function $x y$ and is denoted by $A \cdot B$.

A function $f: \mathbb{F}_{p}^{*} \times \mathbb{F}_{p}^{*} \rightarrow \mathbb{F}_{p}$ being given, what can be said on

$$
\inf _{\substack{A \subset \mathbb{F}^{*} \\|A|,|B|>p^{\alpha}}} \frac{\log |f(A, B)|}{\ln p},
$$

for $0<\alpha<1$? A function is called an expander (according to α) if the above quantity is uniformly in p bigger than α. For instance, $f(x, y)=x(x+y)$ is known to be an expander for any α (cf. [2]). A wide family of expanders has also been provided in [10].

A related question due to Erdős and Szemerédi is the sum-product problem, which takes its roots from the analogous problem in \mathbb{R}. For A to be a finite subset in a ring, we denote

$$
S P(A)=\max (|A+A|,|A \cdot A|)
$$

The best known statement for real numbers asserts that for $A \subset \mathbb{R}$,

$$
S P(A) \geq \frac{|A|^{4 / 3}}{2(\log |A|)^{1 / 3}},
$$

(see [18]).
For a set A in \mathbb{F}_{p}^{*}, the growth will be plainly limited according to the size of $\log |A| / \log p$. We may confer [5] for a complete description of the recent improvements for the size of $S P(A)$. In particular
 uses exponential sums. This result implies $S P(A) \gg|A|^{5 / 4}$ if $|A| \asymp p^{2 / 3}$. This bound has also been obtained in [17] by the use of a graph-theoretical approach. In the same paper Solymosi proved also the bound $\max (|A+B|,|f(A)+C|)>\min \left(p|A|,|A|^{2}|B||C| / p\right)^{1 / 2}$ where f is any polynomial with integral coefficients and degree greater than one. In [21] Vu introduces the class of non-degenerate polynomials $f(x, y)$ over a finite field \mathbb{F}. For such a polynomial one has $\max (|A+A|,|f(A, A)|) \gg$ $\min \left(|A|^{2 / 3}|\mathbb{F}|^{1 / 3},|A|^{3 / 2}|\mathbb{F}|^{-1 / 4}\right)$ for any $A \subset \mathbb{F}$. In [9] Hart, Li and Shen studied such expanding phenomena in connection with the sum-product property and obtained the lower bound for the size of $\max (|u(A) * B|,|v(A) \circ C|)$ where u, v are polynomials over \mathbb{F} and $*, \circ \in\{+, \times\}$. All these lower bounds are non trivial only for $|A|,|B|>|\mathbb{F}|^{1 / 2}$. In [9] the notion of expansion is also extended for subsets E of \mathbb{F}^{2} which are not necessarily a cartesian product $A \times B$ and gives a non trivial lower bound for $\max (|f(E)|,|E+F|)$ where $f: \mathbb{F}^{2} \rightarrow \mathbb{F}$ is a non-degenerate polynomial of degree k and E, F are subsets of \mathbb{F}^{2} with $|E| \gg k|\mathbb{F}|$.

For small subsets A of the prime field \mathbb{F}_{p}, namely if $|A| \leq \sqrt{p}$, it has been proved in [13] that $S P(A) \gg|A|^{13 / 12}$. We will use this fact in Section 6. In [15], the author provides a generalization of this lower bound by showing $\max (|A+A|,|f(A, A)|) \gg|A|^{13 / 12}$ for $|A| \leq \sqrt{p}$ and where $f(x, y)=$ $x(g(x)+y)$ for any arbitrary function $g: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$. One will express this property by notifying that the function $f(x, y)$ satisfies a conditional expanding property relatively to the $\operatorname{sum} x+y$.

All the above quoted results brought to light relative expansion properties according to a pair of two-variable functions, properties which are closely connected to the sum-product problem. In this note, we are interested in a somewhat more general conditional expanding statement of the following kind:

$$
|A|,|B| \asymp p^{\alpha} \Rightarrow \max (|f(A, B)|,|g(A, B)|) \gg|A|^{1+\Delta} .
$$

We will first obtain results with $g(x, y)=x y$ or $x+y$ combined with some more complicated functions $f(x, y)$. For it we will use a generalization of Solymosi's approach in [17] by the mean of d-regular graphs, yielding to Theorems 2.2-2.4. Then we will use it in connection with an explicit statement of the Balog-Szemerédi-Gowers Theorem as done in [5,7] in the case $A=B$ (cf. Theorems 2.5 and 2.6). We will also focus our study on the function $x y\left(x^{k}+y^{k}\right)$ in Section 6 for small subsets of \mathbb{F}_{p} and in Section 8 for finite sets of real numbers.

https://daneshyari.com/en/article/6424356

Download Persian Version:

https://daneshyari.com/article/6424356

Daneshyari.com

[^0]: E-mail addresses: hegyvari@elte.hu (N. Hegyvári), francois.hennecart@univ-st-etienne.fr (F. Hennecart).

