European Journal of Combinatorics 34 (2013) 1365-1382

Contents lists available at SciVerse ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Conditional expanding bounds for two-variable functions over prime fields

European Journal of Combinatorics

Norbert Hegyvári^a, François Hennecart^b

^a ELTE TTK, Eötvös University, Institute of Mathematics, H-1117 Pázmány st. 1/c, Budapest, Hungary
^b Université de Saint-Étienne, Institut Camille Jordan, 23, rue Michelon, 42023 Saint-Étienne, France

ARTICLE INFO

Article history: Available online 14 June 2013

ABSTRACT

In this paper we provide in \mathbb{F}_p expanding lower bounds for two variables functions f(x, y) in connection with the product set or the sumset. The sum–product problem has been immensely studied in the recent past. A typical result in \mathbb{F}_p^* is the existence of $\Delta(\alpha) > 0$ such that if $|A| \simeq p^{\alpha}$ then

 $\max(|A + A|, |A \cdot A|) \gg |A|^{1 + \Delta(\alpha)},$

Our aim is to obtain analogous results for related pairs of twovariable functions f(x, y) and g(x, y): if $|A| \times |B| \times p^{\alpha}$ then

$$\max(|f(A, B)|, |g(A, B)|) \gg |A|^{1+\Delta(\alpha)}$$

for some $\Delta(\alpha) > 0$.

© 2013 Elsevier Ltd. All rights reserved.

To Yahya

1. Introduction

We denote by \mathbb{F}_p the field with p elements and by $\mathbb{F}_p^* = \mathbb{F}_p \setminus \{0\}$ its multiplicative group. Expanding properties of functions in \mathbb{F}_p^* have been widely investigated in the last decade. If $A \subset \mathbb{F}_p$, we denote by |A| its cardinality and write $|A| \asymp p^{\alpha}$ if $c_1 p^{\alpha} < |A| < c_2 p^{\alpha}$ for some fixed real numbers $0 < c_1 < c_2$. Throughout the paper we will use Vinogradov's symbol \gg in the following way: $X \gg Y$ means that there exists an absolute constant $\kappa > 0$ such that $X \ge \kappa Y$ where X and Y are numbers generally depending on certain parameters as the prime number p, the subsets A, B, \ldots of \mathbb{F}_p .

For a given function f(x, y) and two subsets A, B of \mathbb{F}_p^* , we denote

 $f(A, B) = \{f(a, b) : (a, b) \in A \times B\}.$

E-mail addresses: hegyvari@elte.hu (N. Hegyvári), francois.hennecart@univ-st-etienne.fr (F. Hennecart).

^{0195-6698/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ejc.2013.05.021

The sumset corresponds to the function x + y and is denoted by A + B; the product-set corresponds to the function xy and is denoted by $A \cdot B$.

A function $f : \mathbb{F}_p^* \times \mathbb{F}_p^* \to \mathbb{F}_p$ being given, what can be said on

$$\inf_{\substack{A \subset \mathbb{F}_p^* \\ |A|, |B| \asymp p^{\alpha}}} \frac{\log |f(A, B)|}{\ln p},$$

for $0 < \alpha < 1$? A function is called an expander (according to α) if the above quantity is uniformly in p bigger than α . For instance, f(x, y) = x(x + y) is known to be an expander for any α (cf. [2]). A wide family of expanders has also been provided in [10].

A related question due to Erdős and Szemerédi is the sum-product problem, which takes its roots from the analogous problem in \mathbb{R} . For *A* to be a finite subset in a ring, we denote

$$SP(A) = \max(|A + A|, |A \cdot A|).$$

The best known statement for real numbers asserts that for $A \subset \mathbb{R}$,

$$SP(A) \ge \frac{|A|^{4/3}}{2(\log|A|)^{1/3}},$$

(see [18]).

For a set *A* in \mathbb{F}_p^* , the growth will be plainly limited according to the size of $\log |A|/\log p$. We may confer [5] for a complete description of the recent improvements for the size of *SP*(*A*). In particular for large subset *A* of \mathbb{F}_p Garaev (cf. [6]) obtained the bound *SP*(*A*) $\gg \min(\sqrt{p|A|}, |A|^2/\sqrt{p})$. His proof uses exponential sums. This result implies *SP*(*A*) $\gg |A|^{5/4}$ if $|A| \approx p^{2/3}$. This bound has also been obtained in [17] by the use of a graph-theoretical approach. In the same paper Solymosi proved also the bound max(|A + B|, |f(A) + C|) $\gg \min(p|A|, |A|^2|B||C|/p)^{1/2}$ where *f* is any polynomial with integral coefficients and degree greater than one. In [21] Vu introduces the class of non-degenerate polynomials f(x, y) over a finite field \mathbb{F} . For such a polynomial one has $\max(|A + A|, |f(A, A)|) \gg$ $\min(|A|^{2/3}|\mathbb{F}|^{1/3}, |A|^{3/2}|\mathbb{F}|^{-1/4})$ for any $A \subset \mathbb{F}$. In [9] Hart, Li and Shen studied such expanding phenomena in connection with the sum–product property and obtained the lower bound for the size of $\max(|u(A) * B|, |v(A) \circ C|)$ where u, v are polynomials over \mathbb{F} and $*, o \in \{+, \times\}$. All these lower bounds are non trivial only for $|A|, |B| > |\mathbb{F}|^{1/2}$. In [9] the notion of expansion is also extended for subsets *E* of \mathbb{P}^2 which are not necessarily a cartesian product $A \times B$ and gives a non trivial lower bound for $\max(|f(E)|, |E + F|)$ where $f : \mathbb{F}^2 \to \mathbb{F}$ is a non-degenerate polynomial of degree *k* and *E*, *F* are subsets of \mathbb{F}^2 with $|E| \gg k|\mathbb{F}|$.

For small subsets *A* of the prime field \mathbb{F}_p , namely if $|A| \leq \sqrt{p}$, it has been proved in [13] that $SP(A) \gg |A|^{13/12}$. We will use this fact in Section 6. In [15], the author provides a generalization of this lower bound by showing max $(|A + A|, |f(A, A)|) \gg |A|^{13/12}$ for $|A| \leq \sqrt{p}$ and where f(x, y) = x(g(x) + y) for any arbitrary function $g : \mathbb{F}_p \to \mathbb{F}_p$. One will express this property by notifying that the function f(x, y) satisfies a conditional expanding property relatively to the sum x + y.

All the above quoted results brought to light relative expansion properties according to a pair of two-variable functions, properties which are closely connected to the sum–product problem. In this note, we are interested in a somewhat more general conditional expanding statement of the following kind:

$$|A|, |B| \simeq p^{\alpha} \Rightarrow \max(|f(A, B)|, |g(A, B)|) \gg |A|^{1+\Delta}$$

We will first obtain results with g(x, y) = xy or x+y combined with some more complicated functions f(x, y). For it we will use a generalization of Solymosi's approach in [17] by the mean of *d*-regular graphs, yielding to Theorems 2.2–2.4. Then we will use it in connection with an explicit statement of the Balog–Szemerédi–Gowers Theorem as done in [5,7] in the case A = B (cf. Theorems 2.5 and 2.6). We will also focus our study on the function $xy(x^k + y^k)$ in Section 6 for small subsets of \mathbb{F}_p and in Section 8 for finite sets of real numbers.

1366

Download English Version:

https://daneshyari.com/en/article/6424356

Download Persian Version:

https://daneshyari.com/article/6424356

Daneshyari.com