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We study quasipolynomials enumerating proper colorings, no-
where-zero tensions, and nowhere-zero flows in an arbitrary CW-
complex X , generalizing the chromatic, tension and flow poly-
nomials of a graph. Our colorings, tensions and flows may be
either modular (with values in Z/kZ for some k) or integral (with
values in {−k + 1, . . . ,k − 1}). We obtain deletion–contraction re-
currences and closed formulas for the chromatic, tension and flow
quasipolynomials, assuming certain unimodularity conditions. We
use geometric methods, specifically Ehrhart theory and inside-out
polytopes, to obtain reciprocity theorems for all of the aforemen-
tioned quasipolynomials, giving combinatorial interpretations of
their values at negative integers as well as formulas for the num-
bers of acyclic and totally cyclic orientations of X .

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

This article is about generalizing the enumeration of colorings, flows, cuts and tensions from
graphs to cell complexes. We begin with a review of colorings of graphs.

Let G = (V , E) be a graph and let k be a positive integer. A proper k-coloring of G is a function
f : V → K , where K is a “palette” of size k and f (v) �= f (w) whenever v w is an edge of G . It is well
known that the number χG(k) of proper k-colorings is a polynomial in k (the chromatic polynomial
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of G). Remarkably, the numbers χG(−k) have combinatorial interpretations as well, as discovered by
Stanley [33]; the best known of these is that |χG(−1)| is the number of acyclic orientations of G . This
phenomenon is an instance of combinatorial reciprocity and is closely related to, e.g., Ehrhart’s enumer-
ation of lattice points in polytopes [19] and Zaslavsky’s theorems on counting regions of hyperplane
arrangements [38].

Fix an orientation on the edges of G and let ∂ be the signed incidence matrix of G; that is, the
rows and columns of ∂ are indexed by vertices and edges respectively, and the (v, e) entry is⎧⎨

⎩
1 if vertex v is the head of edge e,
−1 if vertex v is the tail of edge e,
0 if v is not an endpoint of e.

If we regard a coloring f as a row vector c = [ f (v)]v∈V , then properness says precisely that c∂
is nowhere zero, since for each edge v w , the corresponding entry of c∂ is f (v) − f (w). Here the
palette may be regarded either as the integers 1, . . . ,k or as the elements of Z/kZ = Zk . The number
of k-colorings may then be computed by linear algebra and inclusion–exclusion, yielding Whitney’s
formula for the chromatic polynomial (see, e.g., [37, §5.3]).

The cut and flow spaces of G are respectively the row space and kernel of its boundary matrix ∂ ,
regarded as a map of modules over a ring A (typically either Z, R, or Zk). Cuts and flows arise in
algebraic graph theory and are connected to the critical group and the chip-firing game; see, e.g., [1]
or [21, Chapter 14]. Over Z, we consider in addition the space of tensions, or integer vectors of whom
some multiple is in the cut space. (Over a field or a finite ring, all tensions are cuts.) For a general-
ization of cuts and flows to cell complexes, see [18].

If we regard the graph G as a one-dimensional simplicial complex, the matrix ∂ is just the
boundary map from 1-chains to 0-chains. Accordingly, we can replace the graph by an arbitrary
d-dimensional CW-complex X and define cellular colorings, flows, tensions and cuts in terms of its
top cellular boundary map ∂ : Cd(X;Z) → Cd−1(X;Z).

In Section 3, we study the functions

χ∗
X (k) = number of proper Zk-colorings of X,

τ ∗
X (k) = number of nowhere-zero Zk-tensions of X,

ϕ∗
X (k) = number of nowhere-zero Zk-flows of X .

When X is a graph, these are all polynomials in k (for the tension and flow polynomials, see [36]);
in fact, they are specializations of the Tutte polynomial of X . For arbitrary cell complexes, we show
that the modular counting functions are always quasipolynomials, and find sufficient conditions on X
for them to be genuine polynomials (building on the work of the first author and Y. Kemper [2]).
We describe two avenues toward such results, using colorings as an example (the other arguments
are similar). First, if ∂ contains a unit entry, then pivoting the matrix ∂ there corresponds to the
topological operations of deleting a facet or deformation-retracting it onto a neighboring ridge, and
gives rise to a deletion–contraction recurrence for modular colorings. Provided that this “shrinking”
process can be iterated, it follows by induction that χ∗

X (k) is a polynomial. The second approach is
a linear-algebraic inclusion–exclusion argument, which produces a closed quasipolynomial formula for
χ∗

X (k) (Theorem 3.4), which is easily seen to be polynomial if every column-selected submatrix of ∂

has no nontrivial invariant factors (a weaker condition than total unimodularity).
In Section 4, we study the integral counting functions

χX (k) = number of proper K -colorings of X,

τX (k) = number of nowhere-zero K -tensions of X,

ϕX (k) = number of nowhere-zero K -flows of X,

where K is the palette {−k + 1,−k + 2, . . . ,k − 1} ⊆ Z. When X is a graph, these are all polynomials
in k as was shown by Kochol [25,26]. These can be regarded as Ehrhart functions, enumerating lattice
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