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EH-suprema of those tournaments. In [5] it was proven that
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procedure that produces bigger graphs satisfying the conjec-
ture from smaller ones. All graphs obtained in such a way have
nontrivial homogeneous sets. For a long time that was the only
method to obtain infinite families of graphs satisfying the con-
jecture. Recently Berger, the author and Chudnovsky (see [2])
constructed a new infinite family of tournaments (so-called
galazxies, to be defined below) that satisfies the conjecture and
with no nontrivial homogeneous sets. Therefore it cannot be
obtained by the procedure described in [1]. In this paper we
construct a new infinite family of tournaments satisfying the
conjecture — the family of so-called constellations (to be de-
fined below). These results extend the results of [2] since every
galaxy is a constellation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We denote by |S| the size of a set S. Let G be a graph. We denote by V(G) the set
of its vertices. Sometimes instead of writing |V (G)| we will use the shorter notation |G|.
We call |G| the size of G. A clique in the undirected graph is a set of pairwise adjacent
vertices and a stable set in the undirected graph is a set of pairwise nonadjacent vertices.
A tournament is a directed graph such that for every pair v and w of vertices, exactly
one of the edges (v,w) or (w,v) exists. If (v,w) is an edge of the tournament then we
say that v is adjacent to w and w is adjacent from v. For two sets of vertices V;, V5 we
say that Vi is complete to Vo (or equivalently V5 is complete from Vi) if every vertex of
V1 is adjacent to every vertex of V. A tournament is transitive if it contains no directed
cycle. For the set of vertices V' = {v1,va, ..., v} we say that an ordering (v, va, ..., vg)
is transitive if vy is adjacent to all other vertices of V', vs is adjacent to all other vertices
of V but v, etc. We denote by E(G) the set of edges of a graph G.

If a tournament 7" does not contain some other tournament H as a subtournament
then we say that T is H-free. All logarithms used in the paper are natural logarithms.

A celebrated unresolved conjecture of Erdés and Hajnal is as follows:

1.1. For any undirected graph H there exists e(H) > 0 such that every n-vertex undirected
graph that does not contain H as an induced subgraph contains a cliqgue or a stable of
size at least n€H).

In 2001 Alon, Pach and Solymosi proved (see [1]) that Conjecture 1.1 has an equivalent
directed version, where undirected graphs are replaced by tournaments and cliques and
stable sets by transitive subtournaments.

The equivalent directed version (see [1]) states that:

1.2. For any tournament H there exists e(H) > 0 such that every n-vertex H -free tourna-

ment contains a transitive subtournament of size at least n<f1).
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