Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Hyperspaces of convex bodies of constant width $\stackrel{\Rightarrow}{\sim}$

Sergey A. Antonyan $^{\ast},$ Natalia Jonard-Pérez, Saúl Juárez-Ordóñez

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México Distrito Federal, Mexico

ARTICLE INFO

Article history: Received 7 December 2013 Received in revised form 6 May 2014 Accepted 6 May 2014 Available online 26 May 2015

 $\begin{array}{c} MSC; \\ 57N20 \\ 57S10 \\ 52A99 \\ 52A20 \\ 54B20 \\ 54C55 \end{array}$

 $\begin{array}{l} Keywords:\\ {\rm Convex\ body}\\ {\rm Constant\ width}\\ {\rm Constant\ relative\ width}\\ {\rm Hyperspace}\\ Q\text{-manifold} \end{array}$

1. Introduction

Let $cc(\mathbb{R}^n)$, $n \ge 1$, denote the hyperspace of all non-empty compact convex subsets of \mathbb{R}^n endowed with the topology induced by the Hausdorff metric:

$$\rho_H(Y, Z) = \max\left\{\sup_{z \in Z} \|z - Y\|, \ \sup_{y \in Y} \|y - Z\|\right\}, \quad Y, Z \in cc(\mathbb{R}^n),$$

E-mail addresses: antonyan@unam.mx (S.A. Antonyan), nat@ciencias.unam.mx (N. Jonard-Pérez), sjo@ciencias.unam.mx (S. Juárez-Ordóñez).

ABSTRACT

For every $n \geq 1$, let $cc(\mathbb{R}^n)$ denote the hyperspace of all non-empty compact convex subsets of the Euclidean space \mathbb{R}^n endowed with the Hausdorff metric topology. For every non-empty convex subset D of $[0, \infty)$ we denote by $cw_D(\mathbb{R}^n)$ the subspace of $cc(\mathbb{R}^n)$ consisting of all compact convex sets of constant width $d \in D$ and by $crw_D(\mathbb{R}^n)$ the subspace of the product $cc(\mathbb{R}^n) \times cc(\mathbb{R}^n)$ consisting of all pairs of compact convex sets of constant relative width $d \in D$. In this paper we prove that $cw_D(\mathbb{R}^n)$ and $crw_D(\mathbb{R}^n)$ are homeomorphic to $D \times \mathbb{R}^n \times Q$, whenever $D \neq \{0\}$ and $n \geq 2$, where Q denotes the Hilbert cube. In particular, the hyperspace $cw(\mathbb{R}^n)$ of all compact convex bodies of constant relative positive width are homeomorphic to $\mathbb{R}^{n+1} \times Q$.

© 2015 Elsevier B.V. All rights reserved.

 $^{^{\}pm}\,$ The first, second and third authors were supported by CONACYT (Mexico) grants 165195, 204028 and 220836, respectively. * Corresponding author.

where $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^n , i.e.,

$$||x||^2 = \sum_{i=1}^n x_i^2, \quad x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n.$$

In case n = 1, it is easy to see that $cc(\mathbb{R})$ is homeomorphic to $\mathbb{R} \times [0, 1)$ and for every $n \ge 2$, it is well known that $cc(\mathbb{R}^n)$ is homeomorphic to the *punctured Hilbert cube* $Q_0 := Q \setminus \{*\}$, where $Q := [0, 1]^{\infty}$ is the Hilbert cube (see [14, Theorem 7.3]).

By a convex body we mean a compact convex subset of \mathbb{R}^n with non-empty interior. It is proved in [2, Corollary 3.11] that for every $n \geq 2$, the hyperspace $cb(\mathbb{R}^n)$ of all compact convex bodies, endowed with the Hausdorff metric topology, is homeomorphic to the product $Q \times \mathbb{R}^{n(n+3)/2}$. A compact convex set in \mathbb{R}^n is said to be of constant width $d \geq 0$, if the distance between any two of its parallel support hyperplanes is equal to d (see, e.g., [17, Chapter 7, §6]).

As a generalization of compact convex sets of constant width, H. Maehara introduced in [11] the concept of pairs of compact convex sets of constant relative width and showed that these pairs share certain properties of compact convex sets of constant width. A pair $(Y, Z) \in cc(\mathbb{R}^n) \times cc(\mathbb{R}^n)$ is said to be of constant relative width $d \ge 0$, if

$$h_Y(u) + h_Z(-u) = d$$

for every $u \in \mathbb{S}^{n-1}$, where h_Y and h_Z denote the support functions of Y and Z, respectively (see formula (2.1) below) and

$$\mathbb{S}^{n-1} = \left\{ x \in \mathbb{R}^n \, \big| \, \|x\| = 1 \right\}$$

is the unit sphere in \mathbb{R}^n .

For every non-empty convex subset D of $[0, \infty)$ we denote by $cw_D(\mathbb{R}^n)$ the subspace of $cc(\mathbb{R}^n)$ consisting of all compact convex sets of constant width $d \in D$ and by $crw_D(\mathbb{R}^n)$ the subspace of the product $cc(\mathbb{R}^n) \times$ $cc(\mathbb{R}^n)$ consisting of all pairs of compact convex sets of constant relative width $d \in D$. We shall use $cw(\mathbb{R}^n)$ and $crw(\mathbb{R}^n)$ for $cw_{(0,\infty)}(\mathbb{R}^n)$ and $crw_{(0,\infty)}(\mathbb{R}^n)$, respectively. The hyperspaces $cw(\mathbb{R}^n)$, $n \geq 2$, of all convex bodies of constant width in \mathbb{R}^n were first considered in [4].

Note that if $D \subset (0, \infty)$, then every $A \in cw_D(\mathbb{R}^n)$ is a convex body. This does not hold in the hyperspace $crw_D(\mathbb{R}^n)$, i.e., there are pairs (Y, Z) of compact convex sets of constant relative width d > 0, such that either Y or Z is not a convex body. For instance, the pair $(\mathbb{B}^n, \{0\})$ is of constant width 1, where

$$\mathbb{B}^n = \left\{ x \in \mathbb{R}^n \, \big| \, \|x\| \le 1 \right\}$$

is the unit ball in \mathbb{R}^n , while $\{0\}$ is not a body.

Note also that if $D = \{0\}$, then the hyperspaces $cw_D(\mathbb{R}^n) = \{\{x\} \mid x \in \mathbb{R}^n\}$ and $crw_D(\mathbb{R}^n) = \{(\{x\}, \{x\}) \mid x \in \mathbb{R}^n\}$ are both homeomorphic to \mathbb{R}^n .

In case n = 1, it is easy to see that $cw_D(\mathbb{R})$ is homeomorphic to $D \times \mathbb{R}$ for every non-empty convex subset D of $[0, \infty)$ and that $crw_D(\mathbb{R})$ is homeomorphic to $D \times \mathbb{R} \times [0, 1]$ for every non-empty convex subset $D \neq \{0\}$ of $[0, \infty)$ (see Propositions 3.1 and 4.2).

However, for every $n \ge 2$, the topological structure of $cw_D(\mathbb{R}^n)$ and $crw_D(\mathbb{R}^n)$ had remained unknown, except for the cases of convex sets D of the form $[d_0, \infty)$ with $d_0 \ge 0$, for which it was proved in [5, Corollary 1.2] (relying on [5, Theorem 1.1]) that $cw_D(\mathbb{R}^n)$ is homeomorphic to the punctured Hilbert cube Q_0 .

It is the purpose of this paper to give a complete description of the topological structure of the hyperspaces $cw_D(\mathbb{R}^n)$ and $crw_D(\mathbb{R}^n)$ for every $n \ge 2$ and every non-empty convex subset $D \ne \{0\}$ of $[0, \infty)$. Namely,

Download English Version:

https://daneshyari.com/en/article/6424558

Download Persian Version:

https://daneshyari.com/article/6424558

Daneshyari.com