ARTICLE IN PRESS

Topology and its Applications $\bullet \bullet \bullet (\bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Topological representation of lattice homomorphisms

Wojciech Bielas, Aleksander Błaszczyk

University of Silesia, Institute of Mathematics, Bankowa 14, 40-007 Katowice, Poland

A R T I C L E I N F O

Article history: Received 6 January 2014 Received in revised form 1 November 2014 Accepted 4 November 2014 Available online xxxx

Keywords: Distributive lattice Wallman functor Stone duality Boolean algebras

ABSTRACT

Wallman [13] proved that if \mathbb{L} is a distributive lattice with **0** and **1**, then there is a T_1 -space with a base (for closed subsets) being a homomorphic image of \mathbb{L} . We show that this theorem can be extended over homomorphisms. More precisely: if **NLat** denotes the category of normal and distributive lattices with **0** and **1** and homomorphisms, and **Comp** denotes the category of compact Hausdorff spaces and continuous mappings, then there exists a contravariant functor Ult : **NLat** \rightarrow **Comp**. When restricted to the subcategory of Boolean lattices this functor coincides with a well-known Stone functor which realizes the Stone Duality. The functor \mathcal{W} carries monomorphisms into surjections. However, it does not carry epimorphisms into injections. The last property makes a difference with the Stone functor. Some applications to topological constructions are given as well.

© 2015 Published by Elsevier B.V.

TOPOL:5426

and its Applications

1. Basic facts and definitions

We shall consider *lattices* (L, \leq) with zero and one, i.e. partially ordered sets with the smallest element **0** and the greatest element **1** in which for any two elements $x, y \in L$ there exist the supremum $x \lor y = \sup\{x, y\}$ and the infimum $x \land y = \inf\{x, y\}$. Since both infimum and supremum are unique, we get two binary operations \lor and \land which leads to an algebraic structure $\mathbb{L} = \langle L, \land, \lor, \mathbf{0}, \mathbf{1} \rangle$. Immediately from definition of supremum and infimum we get

(a) $x \lor y = y \lor x$ and $x \land y = y \land x$ (commutativity),

(b) $x \land (y \land z) = (x \land y) \land z$ and $x \lor (y \lor z) = (x \lor y) \lor z$ (associativity),

(c) $x = x \lor (x \land y) = x \land (x \lor y)$ (absorption).

An algebraic structure \mathbb{L} which satisfies conditions (a)–(c) is also called a lattice; see e.g. Theorem 1 in [2, p. 44]. We shall follow the common practice and denote the lattice and its underlying set by the

http://dx.doi.org/10.1016/j.topol.2015.05.010 0166-8641/© 2015 Published by Elsevier B.V.

 $Please \ cite \ this \ article \ in \ press \ as: \ W. \ Bielas, \ A. \ Blaszczyk, \ Topological \ representation \ of \ lattice \ homomorphisms, \ Topology \ and \ its \ Applications \ (2015), \ http://dx.doi.org/10.1016/j.topol.2015.05.010$

E-mail addresses: wojciech.bielas@us.edu.pl (W. Bielas), ablaszcz@math.us.edu.pl (A. Błaszczyk).

 $\mathbf{2}$

ARTICLE IN PRESS

W. Bielas, A. Blaszczyk / Topology and its Applications $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

same character. Properties (a) and (b) follow directly from the definition of supremum and infimum. The property (c) is in fact a consequence of the following equivalences:

$$x \leqslant y \Longleftrightarrow x \land y = x \Longleftrightarrow x \lor y = y$$

Together with commutativity and associativity the last equivalences imply

$$x \leqslant y \Longrightarrow x \land z \leqslant y \land z \text{ and } x \lor z \leqslant y \lor z$$

for all $x, y, z \in \mathbb{L}$. In particular we always have

$$x \wedge y \leq x \wedge (y \vee z)$$
 and $x \wedge z \leq x \wedge (y \vee z)$

and finally

$$(x \land y) \lor (x \land z) \leqslant x \land (y \lor z).$$

The equality is not always true. A lattice \mathbb{L} is called *distributive* whenever for any $x, y, z \in \mathbb{L}$ the following formula holds:

$$x \land (y \lor z) = (x \land y) \lor (x \land z).$$

All lattices considered here are assumed to be distributive and contain both 0 and 1.

We have the following trivial example of a distributive lattice: if S is a set then $\mathbb{L} = \langle \mathcal{P}(S), \cup, \cap, \emptyset, S \rangle$ is a distributive lattice. Of course, \emptyset is the smallest and S is the greatest element of \mathbb{L} .

A lattice \mathbb{K} is called a *sublattice* of a lattice \mathbb{L} whenever \mathbb{K} is a subset of \mathbb{L} , both the smallest and the greatest element of \mathbb{L} belong to \mathbb{K} and the lattice operations in \mathbb{K} coincide with the lattice operations in \mathbb{L} . It is obvious that a sublattice of a distributive lattice is distributive as well.

Important examples of distributive lattices are connected to topological spaces. If X is a topological space, then $\operatorname{cl} F$ denotes the closure of a set $F \subseteq X$. The set

$$\mathbb{Cl}(X) = \{F \subseteq X : F = \operatorname{cl} F\}$$

is a sublattice of the lattice $\mathcal{P}(X)$ of all subsets of X considered with the usual set operations. Clearly, $\mathbb{Cl}(X)$ is a distributive lattice. Let us introduce the following notion:

Definition 1.1. Let X be a topological space and $\mathbb{L} \subseteq \mathbb{Cl}(X)$ be a sublattice of $\mathbb{Cl}(X)$. Then \mathbb{L} is called a *base lattice* if the set $\{X \setminus F : F \in \mathbb{L}\}$ is a base for the topology on X.

The base lattices will play important role in this paper.

We say that a lattice $\mathbb{L} = \langle L, \wedge, \vee, \mathbf{0}, \mathbf{1} \rangle$ is *normal* whenever it is distributive and for all $a, b \in \mathbb{L}$ with $a \wedge b = \mathbf{0}$ there exist $x, y \in \mathbb{L}$ such that

 $x \lor y = \mathbf{1}$, and $x \land a = y \land b = \mathbf{0}$.

Every Boolean algebra is a normal lattice. Let us recall that a distributive lattice \mathbb{B} is a Boolean algebra (=Boolean lattice) if it is complementary, i.e. for every $a \in \mathbb{B}$ there exists an element $-a \in \mathbb{B}$ such that $a \vee -a = \mathbf{1}$ and $a \wedge -a = \mathbf{0}$. So, if \mathbb{B} is a Boolean algebra then for $a \wedge b = \mathbf{0}$ it suffices to take x = -a and y = -b.

Please cite this article in press as: W. Bielas, A. Błaszczyk, Topological representation of lattice homomorphisms, Topology and its Applications (2015), http://dx.doi.org/10.1016/j.topol.2015.05.010

Download English Version:

https://daneshyari.com/en/article/6424559

Download Persian Version:

https://daneshyari.com/article/6424559

Daneshyari.com