Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Chart description for hyperelliptic Lefschetz fibrations and their stabilization

Hisaaki Endo^{a,*}, Seiichi Kamada^b

^a Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
 ^b Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

ABSTRACT

ARTICLE INFO

Article history: Received 5 October 2013 Received in revised form 22 February 2014 Accepted 22 February 2014 Available online 23 May 2015

MSC: 57M15 57N13

Keywords: Chart Lefschetz fibration Stabilization

1. Introduction

Chart descriptions were originally introduced in order to describe 2-dimensional braids in [8,9] (cf. [10]). In [13], a chart description for genus-one Lefschetz fibrations was introduced and an elementary proof of Matsumoto's classification theorem was given. At the third JAMEX meeting in Oaxaca, Mexico, 2004, the second author generalized it to a method describing any monodromy representation [11] and investigated genus-two Lefschetz fibrations as an application [12]. Here we introduce a chart description for hyperelliptic Lefschetz fibrations, and show that any hyperelliptic Lefschetz fibration can be stabilized by fiber-sum with certain basic Lefschetz fibrations.

* Corresponding author. Tel.: +81 3 5734 2208.

21. 1 01 2 5724 0000

Cha

Chart descriptions are a graphic method to describe monodromy representations of various topological objects. Here we introduce a chart description for hyperelliptic Lefschetz fibrations, and show that any hyperelliptic Lefschetz fibration can be stabilized by fiber-sum with certain basic Lefschetz fibrations.

© 2015 Elsevier B.V. All rights reserved.

E-mail addresses: endo@math.titech.ac.jp (H. Endo), skamada@sci.osaka-cu.ac.jp (S. Kamada).

2. Lefschetz fibrations

Let M and B be compact, connected, and oriented smooth 4-manifold and 2-manifold, respectively. Let $f: M \to B$ be a smooth map with $\partial M = f^{-1}(\partial B)$. A critical point p is called a *Lefschetz singular point* of *positive type* (or of *negative type*, respectively) if there exist local complex coordinates z_1, z_2 around p and a local complex coordinate ξ around f(p) such that f is locally written as $\xi = f(z_1, z_2) = z_1 z_2$ (or $\overline{z_1} z_2$, resp.). We call f a (smooth or differentiable) *Lefschetz fibration* if all critical points are Lefschetz singular points and if there exists exactly one critical point in the preimage of each critical value.

A general fiber is the preimage of a regular value of f. The genus of a Lefschetz fibration is defined to be the genus g of a general fiber. A singular fiber of positive type (or negative type, resp.) is the preimage of a critical value which contains a Lefschetz singular point of positive type (or negative type, resp.). A singular fiber is obtained by shrinking a simple loop, called a vanishing cycle, on a general fiber. In this paper we assume that a Lefschetz fibration is 'relatively minimal', i.e., all vanishing cycles are essential loops. We say that a singular fiber is of type I if the vanishing cycle is a non-separating loop. We say that a singular fiber is of type II_h for $h = 1, \ldots, [g/2]$ if the vanishing cycle is a separating loop which bounds a genus-hsubsurface of the general fiber.

A singular fiber is of type I⁺ if it is of type I and of positive type. Similarly type I⁻ and type II_h⁺, type II_h⁻ for $h = 1, \ldots, [g/2]$ are defined. We denote by $n_0^+(f), n_0^-(f), n_h^+(f)$, and $n_h^-(f)$, the numbers of singular fibers of f of type I⁺, I⁻, II_h⁺, and II_h⁻, respectively. A Lefschetz fibration is called *irreducible* if every singular fiber is of type I, i.e., $n_h^+(f) = n_h^-(f) = 0$ for $h = 1, \ldots, [g/2]$. A Lefschetz fibration is called *chiral* or symplectic if every singular fiber is of positive type, i.e., $n_0^-(f) = n_h^-(f) = 0$ for $h = 1, \ldots, [g/2]$.

Let $f : M \to B$ be a Lefschetz fibration, and $\Delta = \{q_1, \ldots, q_n\}$ the set of critical values. Let $\rho : \pi_1(B \setminus \Delta, q_0) \to MC$ be the monodromy representation of f, where q_0 is a base point of $B \setminus \Delta$ and MC is the mapping class group of the fiber $f^{-1}(q_0)$. Consider a Hurwitz arc system for Δ , say $\mathcal{A} = (A_1, \ldots, A_n)$; each A_i is an embedded arc in B connecting q_0 and a point of Δ such that $A_i \cap A_j = \{q_0\}$ for $i \neq j$, and they appear in this order around q_0 . When B is a 2-sphere or a 2-disk, the system \mathcal{A} determines a system of generators of $\pi_1(B \setminus \Delta, q_0)$, say (a_1, \ldots, a_n) . We call $(\rho(a_1), \ldots, \rho(a_n))$ a Hurwitz system of f. For details on Hurwitz systems, refer to [1,7,15-17], etc.

Let ι be the mapping class of an involution of the fiber $f^{-1}(q_0)$ with 2g + 2 fixed points. The centralizer *HMG* of ι in *MG* is called the *hyperelliptic mapping class group* of $f^{-1}(q_0)$. A Lefschetz fibration is called *hyperelliptic* if the image of the monodromy representation ρ is included in *HMG*.

3. Main result

Let ζ_i (i = 1, ..., 2g+1) be positive Dehn twists along the loops C_i (i = 1, ..., 2g+1) illustrated in Fig. 1. The hyperelliptic mapping class group *HMC* of a genus-*g* Riemann surface is generated by $\zeta_1, ..., \zeta_{2g+1}$, and the following relations are defining relations (cf. [4]).

$$\zeta_i \zeta_j = \zeta_j \zeta_i \quad \text{if } |i - j| \ge 2, \tag{1}$$

$$\zeta_i \zeta_{i+1} \zeta_i = \zeta_{i+1} \zeta_i \zeta_{i+1} \quad \text{for } i = 1, \dots, 2g, \tag{2}$$

$$\iota^2 = 1 \quad \text{where } \iota = \zeta_1 \cdots \zeta_{2g} \zeta_{2g+1}^2 \zeta_{2g} \cdots \zeta_1, \tag{3}$$

$$(\zeta_1 \cdots \zeta_{2g+1})^{2g+2} = 1,\tag{4}$$

$$\iota \zeta_i = \zeta_i \iota \quad \text{for } i = 1, \dots, 2g+1.$$
(5)

Let σ_h be a positive Dehn twist along the loop S_h illustrated in Fig. 1. Then $\sigma_h = (\zeta_1 \cdots \zeta_{2h})^{4h+2}$ for $h = 1, \ldots, [g/2]$.

Download English Version:

https://daneshyari.com/en/article/6424563

Download Persian Version:

https://daneshyari.com/article/6424563

Daneshyari.com