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1. Introduction

Chart descriptions were originally introduced in order to describe 2-dimensional braids in [8,9] (cf. [10]).
In [13], a chart description for genus-one Lefschetz fibrations was introduced and an elementary proof of
Matsumoto’s classification theorem was given. At the third JAMEX meeting in Oaxaca, Mexico, 2004, the
second author generalized it to a method describing any monodromy representation [11] and investigated
genus-two Lefschetz fibrations as an application [12]. Here we introduce a chart description for hyperelliptic
Lefschetz fibrations, and show that any hyperelliptic Lefschetz fibration can be stabilized by fiber-sum with
certain basic Lefschetz fibrations.
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2. Lefschetz fibrations

Let M and B be compact, connected, and oriented smooth 4-manifold and 2-manifold, respectively. Let
f: M — B be a smooth map with OM = f~1(0B). A critical point p is called a Lefschetz singular point of
positive type (or of negative type, respectively) if there exist local complex coordinates z1, z2 around p and
a local complex coordinate & around f(p) such that f is locally written as £ = f(z1,22) = 2122 (or Z129,
resp.). We call f a (smooth or differentiable) Lefschetz fibration if all critical points are Lefschetz singular
points and if there exists exactly one critical point in the preimage of each critical value.

A general fiber is the preimage of a regular value of f. The genus of a Lefschetz fibration is defined to be
the genus g of a general fiber. A singular fiber of positive type (or negative type, resp.) is the preimage of a
critical value which contains a Lefschetz singular point of positive type (or negative type, resp.). A singular
fiber is obtained by shrinking a simple loop, called a vanishing cycle, on a general fiber. In this paper we
assume that a Lefschetz fibration is ‘relatively minimal’, i.e., all vanishing cycles are essential loops. We
say that a singular fiber is of type I if the vanishing cycle is a non-separating loop. We say that a singular
fiber is of type I, for h = 1,...,[g/2] if the vanishing cycle is a separating loop which bounds a genus-h
subsurface of the general fiber.

A singular fiber is of type IT if it is of type I and of positive type. Similarly type I~ and type II;I", type
II, for h=1,...,[g/2] are defined. We denote by ng (f), ng (f), nt(f), and n; (f), the numbers of singular
fibers of f of type IT, I~ IIZ7 and 1I,, respectively. A Lefschetz fibration is called érreducible if every
singular fiber is of type I, i.e., nj (f) =n;, (f) =0 for h =1,...,[g/2]. A Lefschetz fibration is called chiral
or symplectic if every singular fiber is of positive type, i.e., ny (f) =n, (f) =0for h=1,...,[g/2].

Let f : M — B be a Lefschetz fibration, and A = {q¢1,...,¢,} the set of critical values. Let p :
m1(B\ A, gy) — MC be the monodromy representation of f, where qq is a base point of B\ A and MC is
the mapping class group of the fiber f~1(qo). Consider a Hurwitz arc system for A, say A = (Aj,..., A,);
each A; is an embedded arc in B connecting go and a point of A such that A; N A; = {qo} for i # j, and
they appear in this order around go. When B is a 2-sphere or a 2-disk, the system A determines a system
of generators of m1 (B \ A, qo), say (a1,...,a,). We call (p(a1),...,p(a,)) a Hurwitz system of f. For details
on Hurwitz systems, refer to [1,7,15-17], etc.

Let ¢ be the mapping class of an involution of the fiber f~!(qo) with 2g + 2 fixed points. The centralizer
HMG of ¢ in MG is called the hyperelliptic mapping class group of f~1(qo). A Lefschetz fibration is called
hyperelliptic if the image of the monodromy representation p is included in HMG.

3. Main result

Let ¢; (i =1,...,29+1) be positive Dehn twists along the loops C; (i = 1,...,2g+1) illustrated in Fig. 1.
The hyperelliptic mapping class group HMC of a genus-g Riemann surface is generated by (i, ..., {2g+1,
and the following relations are defining relations (cf. [4]).

GG =¢¢G  iffi—jl>2, (1)
GiGit1G = G41GiGipr  fori=1,...,2g, (2)
» =1 where t = (1 -+ (2gCog11C2g - 1 (3)
(G Gogr1)®H? =1, (4)

(5)

1 =¢Ct fori=1,...,29g+1.

Let oy, be a positive Dehn twist along the loop S illustrated in Fig. 1. Then o}, = ({7 - ~C2h)4h+2 for
h=1,...,[9/2]
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