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The notion of a braid is generalized into two and three dimensions. Two-dimensional 
braids are described by braid monodromies or graphics called charts. In this paper 
we introduce the notion of curtains, and show that three-dimensional braids are 
described by braid monodromies or curtains.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we work in the PL category [8,15] and assume that all manifolds are oriented 
and m-manifolds embedded in (m + 2)-manifolds are locally flat. We denote by D2 the 2-disk and by Bm

the m-disk. Let d be a positive integer and Xd a fixed set of d interior points of the 2-disk D2.
For the product space D2 × Σm of D2 and an m-manifold Σm, we denote by pr1 : D2 × Σm → D2 the 

first factor projection, and by pr2 : D2 × Σm → Σm the second factor projection.
First we introduce the notion of a 3-dimensional braid.

Definition 1.

(1) A 3-dimensional braid in D2×B3 (or over B3) of degree d is a 3-manifold M embedded in D2×B3 such 
that (i) the restriction map pr2|M : M → B3 is a simple branched covering map of degree d branched 
along a link in B3 and (ii) ∂M = M ∩ ∂(D2 ×B3) = Xd × ∂B3.

* Corresponding author.
E-mail addresses: carter@southalabama.edu (J. Scott Carter), skamada@sci.osaka-cu.ac.jp (S. Kamada).

http://dx.doi.org/10.1016/j.topol.2015.05.012
0166-8641/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.topol.2015.05.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:carter@southalabama.edu
mailto:skamada@sci.osaka-cu.ac.jp
http://dx.doi.org/10.1016/j.topol.2015.05.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2015.05.012&domain=pdf


J. Scott Carter, S. Kamada / Topology and its Applications 196 (2015) 510–521 511

(2) A 3-dimensional braid in D2×S3 (or over S3) of degree d is a 3-manifold M embedded in D2×S3 such 
that (i) the restriction map pr2|M : M → S3 is a simple branched covering map of degree d branched 
along a link in S3.

When we refer to a link, it may be the empty set. Refer to [1,2] for simple branched coverings.
More generally, we introduce the notion of a braided 3-manifold as follows. Let Σ3 be a 3-manifold.

Definition 2. A braided 3-manifold in D2 × Σ3 (or over Σ3) of degree d is a 3-manifold M embedded in 
D2 ×Σ3 such that the restriction map pr2|M : M → Σ3 is a simple branched covering map of degree d and 
∂M = M ∩ ∂(D2 × Σ3) ⊂ intD2 × ∂Σ3.

A 3-dimensional braid in D2 × B3 is a braided 3-manifold in D2 × B3 such that ∂M = Xd × ∂B3 and 
the branch set is a link in B3. A 3-dimensional braid in D2 × S3 is a braided 3-manifold in D2 × S3 such 
that the branch set is a link in S3.

Since any closed 3-manifold can be presented as a simple branched covering of S3 branched along a link 
[7,13], our assumption that the branch set is a link is not so restrictive.

In this paper, we study how to describe 3-dimensional braids. We consider two methods, one is braid 
monodromies and the other is curtain descriptions. The idea of the curtain description was introduced in [3], 
and some examples were shown in [3,4]. However, existence of a curtain for any 3-dimensional braid was 
not shown. The main purpose of this paper is to show how to construct a curtain.
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second author was supported by JSPS KAKENHI Grant Number 21340015.

2. 2-Dimensional braids, braid monodromies and charts

Before going to the case of 3-dimension in the next section, we quickly recall the notions of 2-dimensional 
braids, braid monodromies and charts. For the precise definitions and details, refer to [5,12]. The reader 
who is familiar with these notions may skip this section.

Let Σ2 be a surface.

Definition 3. A braided surface in D2 × Σ2 (or over Σ2) of degree d is a surface S embedded in D2 × Σ2

such that the restriction map pr2|S : S → Σ2 is a simple branched covering map of degree d and ∂S =
S ∩ ∂(D2 × Σ2) ⊂ intD2 × ∂Σ2.

(1) A 2-dimensional braid in D2×B2 (or over B2) is a braided surface in D2×B2 such that ∂S = Xd×∂B2.
(2) A 2-dimensional braid in D2 × S2 (or over S2) is a braided surface in D2 × S2.

Definition 4. Two 2-dimensional braids S and S′ in D2 ×B2 are said to be equivalent if there is an ambient 
isotopy {hs : D2 ×B2 → D2 ×B2}s∈[0,1] such that

(1) h0 = id and h1(S) = S′,
(2) there is an ambient isotopy {hs : B2 → B2}s∈[0,1] with hs ◦ pr2 = pr2 ◦ hs for each s ∈ [0, 1], and
(3) for each s ∈ [0, 1], the restriction map of hs to D2 × ∂B2 is the identity map.

Moreover, if hs = id : B2 → B2 for each s ∈ [0, 1], then we say that S and S′ are isomorphic.
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