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Improving the slice-Bennequin inequality shown by Rudolph, we estimate some 
knot or link invariants, especially the knot invariant defined by Ozsváth and Szabó 
and the Rasmussen invariant for links introduced by Beliakova and Wehrli. Our 
argument implies a combinatorial proof of the slice-Bennequin inequality for links. 
Furthermore we determine such invariants for negative links and certain pretzel 
knots.
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1. Introduction

A link is a closed oriented 1-manifold smoothly embedded in the 3-sphere S3 and a knot is a link with 
one component.

Let L be a link. The slice Euler characteristic of the link L is the maximum Euler characteristic for an 
oriented compact 2-manifold without closed component, which is smoothly embedded in the 4-ball B4 with 
boundary L ⊂ S3 = ∂B4. We denote this invariant by χs(L). We note the 2-manifold is not assumed to 
be connected. Using the gauge theory, Rudolph estimated the slice Euler characteristics for links as follows. 
Let D be an oriented link diagram. We respectively denote by x(D), x+(D), x−(D), and O(D) the number 
of crossings, the number of positive crossings, the number of negative crossings, and the number of Seifert 
circles of D. The writhe w(D) is the value defined by x+(D) − x−(D). In [17] Rudolph showed that the 
following inequality holds for any link L and any diagram DL of L:

χs(L) ≤ O(DL) − w(DL). (1)
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Fig. 1. An example of a link diagram and its Seifert circles.

This inequality is called the slice-Bennequin inequality. Furthermore, he and Nakamura independently 
showed in [18,12] that the following equality holds for any positive link L and any positive diagram DL of L:

χs(L) = O(DL) − x(DL). (2)

A positive (link) diagram is a link diagram without negative crossing, and a positive link is a link which has 
a positive diagram. We note the trivial link is positive.

A Seifert circle is a strongly negative circle if it is adjacent to at least two negative crossings but adjacent 
to no positive crossings. A Seifert circle is a non-negative circle if it is not a strongly negative circle. 
For example, the trivial diagram of a trivial knot has a non-negative circle. The blackboard diagram of a 
(−1)-framed trivial knot, that is, the knot diagram with a single negative crossing but no positive crossings, 
has two non-negative circles. A knot diagram illustrated on the left of Fig. 1 has three Seifert circles as 
illustrated on the right. The top circle is strongly negative and the concentric circles at the bottom are 
non-negative. For a given oriented link diagram D, we denote by O<(D) and O≥(D) the number of strongly 
negative circles and non-negative circles respectively. It is clear that the equality O(D) = O<(D) +O≥(D)
holds.

In [5] the author restated the inequality

χs(L) ≤ O≥(DL) −O<(DL) − w(DL), (3)

which Rudolph announced in [17], and completely proved that it holds for any link L and any diagram DL

of L. By an argument similar to that for the proof of this inequality, we improve the above inequalities (1)
and (3) as follows.

For a link L and a diagram DL of L, we eliminate all negative crossings in the same manner as the 
Seifert algorithm, and denote the obtained diagram by D0+

L . This diagram is positive. All strongly negative 
circles of DL appear as split trivial components in D0+

L . We remove such circles from D0+
L , and denote the 

obtained diagram by D+
L . The new diagram D+

L is empty or positive. The diagrams D0+
L and D+

L are defined 
uniquely from DL. In this article, we denote by l0(DL) and l(DL) the number of the split components of 
the link represented by the diagrams D0+

L and D+
L respectively. It is clear that l0(DL) = l(DL) + O<(DL).

For example, let D be the blackboard diagram of a (−1)-framed trivial knot. The positive diagram D0+

of D represents a trivial 2-component link, and the positive diagram D+ is also. Then we have l0 = l = 2. 
The positive diagram D+

K of the knot diagram DK illustrated on the left of Fig. 1 represents the (2, 4)-torus
link, then we have l0 = 2 and l = 1. For the knot diagram DL illustrated on the left of Fig. 2, the positive 
diagrams D0+

L and D+
L are illustrated on the middle and right of Fig. 2. In this case, we have l0 = 3

and l = 2.

Theorem 1.1. Let L be a link and DL be a diagram of L. If the link L is not splittable, then the following 
inequality holds:

χs(L) ≤ O≥(DL) −O<(DL) − w(DL) − 2(l(DL) − 1)

= O(DL) − w(DL) − 2(l0(DL) − 1).
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