Bridge genus and braid genus of lens space

CrossMark

Shin'ya Okazaki
Osaka City University Advanced Mathematical Institute, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

A R T I C L E I N F O

Article history:

Received 26 December 2013
Received in revised form 8 March 2014
Accepted 8 March 2014
Available online 3 June 2015

$M S C$:

57 C 25
57D27

Keywords:
Bridge genus
Braid genus
0 -Surgery
Lens space

Abstract

The bridge genus and the braid genus are invariants of a closed connected orientable 3 -manifold introduced by A. Kawauchi. The Heegaard genus, the bridge genus and the braid genus are linearly independent as invariants of a closed connected orientable 3-manifold. In this paper, we calculate the bridge genus and the braid genus for some lens spaces, and we give the upper bounds of the braid genus for all lens spaces.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let M be a closed connected orientable 3-manifold, and L a link in the 3 -sphere S^{3}. In the paper [3], A. Kawauchi introduced the bridge genus $g_{\text {bridge }}(M)$ and the braid genus $g_{\text {braid }}(M)$ for any M as follows. The bridge genus $g_{\text {bridge }}(M)$ (resp. the braid genus $g_{\text {braid }}(M)$) for any M is the minimal number of the bridge numbers bridge (L) (resp. the braid indexes $\operatorname{braid}(L)$) for all links L such that M is obtained by the 0 -surgery on S^{3} along L. Here bridge (L) is the bridge number of L, and $\operatorname{braid}(L)$ is the braid index of L. Every closed connected orientable 3 -manifold is obtained by the 0 -surgery on S^{3} along a link [3]. Thus, the bridge genus and the braid genus are invariants of M. Let $g_{\mathrm{H}}(M)$ be the Heegaard genus for any M. The following theorem holds for $g_{\mathrm{H}}(M), g_{\text {bridge }}(M)$ and $g_{\text {braid }}(M)[5]$.

Theorem 1.1. ([5]) The following inequalities hold for every closed connected orientable 3-manifold M.

$$
g_{\mathrm{H}}(M) \leq g_{\text {bridge }}(M) \leq g_{\text {braid }}(M)
$$

Further, these invariants are linearly independent.

[^0]For every lens space except the 3 -sphere, the Heegaard genus is equal to one. In this paper, we consider the bridge genus and the braid genus of a lens space. Let $L(p, q)$ be the lens space of type (p, q), where we assume $0<q<p$ unless otherwise specified.

In Section 2, we prove the following lemmas.
Lemma 1.2. Let a be an even integer. Then the following equalities hold.

$$
g_{\text {bridge }}(L(a, 1))=g_{\text {braid }}(L(a, 1))=3
$$

Lemma 1.3. Let a and b be even integers. Then the following equalities hold.

$$
g_{\text {bridge }}(L(a b-1, b))=g_{\text {braid }}(L(a b-1, b))=4
$$

Let $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ be the continued fraction of the quotient $\frac{p}{q}$ given as follows.

$$
\frac{p}{q}=a_{1}-\frac{1}{a_{2}-\frac{1}{\ddots-\frac{1}{a_{n}}}} .
$$

We define the non-negative integer $n(L(p, q))$ as follows.

$$
n(L(p, q))=\min \left\{\begin{array}{c}
\left.n ; \begin{array}{l}
{\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\frac{p^{\prime}}{q^{\prime}}, L\left(p^{\prime}, q^{\prime}\right)=L(p, q),} \\
\text { and } a_{1}, a_{2}, \ldots, a_{n} \text { are non-zero even integers }
\end{array}\right\} ~ . ~ . ~
\end{array}\right.
$$

In this definition, we grant that p^{\prime} and q^{\prime} are negative coprime integers. The following lemma gives the upper bound of the braid genus for all lens spaces.

Lemma 1.4. For every lens space $L(p, q)$, the following inequality holds.

$$
g_{\text {braid }}(L(p, q)) \leq n(L(p, q))+2 .
$$

In Sections 3 and 4 , we consider $g_{\text {bridge }}(L(p, q))$ and $g_{\text {braid }}(L(p, q))$ which are not obtained by Lemmas 1.2 and 1.3. By the following theorem, we have examples of a lens space whose bridge genus and braid genus are 5 .

Theorem 1.5. For the lens space $L(p, q)$, if $n(L(p, q))=3$, and p is an even integer such that $\frac{p}{2}$ is a prime integer or the product of two (possibly, equal) prime integers, and q is not a square modulo p, then

$$
g_{\text {bridge }}(L(p, q))=g_{\text {braid }}(L(p, q))=5 .
$$

We have the following example by Theorem 1.5.
Example 1.6. The following equalities hold.

$$
\begin{aligned}
g_{\text {bridge }}(L(8,3)) & =g_{\text {braid }}(L(8,3))=5 \\
g_{\text {bridge }}(L(10,3)) & =g_{\text {braid }}(L(10,3))=5 .
\end{aligned}
$$

https://daneshyari.com/en/article/6424633

Download Persian Version:

https://daneshyari.com/article/6424633

Daneshyari.com

[^0]: E-mail address: sokazaki@sci.osaka-cu.ac.jp.
 http://dx.doi.org/10.1016/j.topol.2015.05.047
 0166-8641/© 2015 Elsevier B.V. All rights reserved.

