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The bridge genus and the braid genus are invariants of a closed connected orientable 
3-manifold introduced by A. Kawauchi. The Heegaard genus, the bridge genus 
and the braid genus are linearly independent as invariants of a closed connected 
orientable 3-manifold. In this paper, we calculate the bridge genus and the braid 
genus for some lens spaces, and we give the upper bounds of the braid genus for all 
lens spaces.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let M be a closed connected orientable 3-manifold, and L a link in the 3-sphere S3. In the paper [3], 
A. Kawauchi introduced the bridge genus gbridge(M) and the braid genus gbraid(M) for any M as follows. 
The bridge genus gbridge(M) (resp. the braid genus gbraid(M)) for any M is the minimal number of the 
bridge numbers bridge(L) (resp. the braid indexes braid(L)) for all links L such that M is obtained by the 
0-surgery on S3 along L. Here bridge(L) is the bridge number of L, and braid(L) is the braid index of L. 
Every closed connected orientable 3-manifold is obtained by the 0-surgery on S3 along a link [3]. Thus, the 
bridge genus and the braid genus are invariants of M . Let gH(M) be the Heegaard genus for any M . The 
following theorem holds for gH(M), gbridge(M) and gbraid(M) [5].

Theorem 1.1. ([5]) The following inequalities hold for every closed connected orientable 3-manifold M .

gH(M) ≤ gbridge(M) ≤ gbraid(M).

Further, these invariants are linearly independent.
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For every lens space except the 3-sphere, the Heegaard genus is equal to one. In this paper, we consider 
the bridge genus and the braid genus of a lens space. Let L(p, q) be the lens space of type (p, q), where we 
assume 0 < q < p unless otherwise specified.

In Section 2, we prove the following lemmas.

Lemma 1.2. Let a be an even integer. Then the following equalities hold.

gbridge(L(a, 1)) = gbraid(L(a, 1)) = 3

Lemma 1.3. Let a and b be even integers. Then the following equalities hold.

gbridge(L(ab− 1, b)) = gbraid(L(ab− 1, b)) = 4

Let [a1, a2, . . . , an] be the continued fraction of the quotient p
q

given as follows.

p

q
= a1 −

1

a2 −
1

. . . − 1
an

.

We define the non-negative integer n(L(p, q)) as follows.

n(L(p, q)) = min

⎧⎨
⎩n; [a1, a2, . . . , an] = p′

q′
, L(p′, q′) = L(p, q),

and a1, a2, . . . , an are non-zero even integers

⎫⎬
⎭ .

In this definition, we grant that p′ and q′ are negative coprime integers. The following lemma gives the 
upper bound of the braid genus for all lens spaces.

Lemma 1.4. For every lens space L(p, q), the following inequality holds.

gbraid(L(p, q)) ≤ n(L(p, q)) + 2.

In Sections 3 and 4, we consider gbridge(L(p, q)) and gbraid(L(p, q)) which are not obtained by Lemmas 1.2
and 1.3. By the following theorem, we have examples of a lens space whose bridge genus and braid genus 
are 5.

Theorem 1.5. For the lens space L(p, q), if n(L(p, q)) = 3, and p is an even integer such that p2 is a prime 

integer or the product of two (possibly, equal) prime integers, and q is not a square modulo p, then

gbridge(L(p, q)) = gbraid(L(p, q)) = 5.

We have the following example by Theorem 1.5.

Example 1.6. The following equalities hold.

gbridge(L(8, 3)) = gbraid(L(8, 3)) = 5.

gbridge(L(10, 3)) = gbraid(L(10, 3)) = 5.
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