

Contents lists available at ScienceDirect

## Topology and its Applications

www.elsevier.com/locate/topol



# Bridge genus and braid genus of lens space



Shin'ya Okazaki

Osaka City University Advanced Mathematical Institute, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

#### ARTICLE INFO

Article history: Received 26 December 2013 Received in revised form 8 March 2014 Accepted 8 March 2014 Available online 3 June 2015

MSC: 57C25 57D27

Keywords: Bridge genus Braid genus 0-Surgery Lens space

#### ABSTRACT

The bridge genus and the braid genus are invariants of a closed connected orientable 3-manifold introduced by A. Kawauchi. The Heegaard genus, the bridge genus and the braid genus are linearly independent as invariants of a closed connected orientable 3-manifold. In this paper, we calculate the bridge genus and the braid genus for some lens spaces, and we give the upper bounds of the braid genus for all lens spaces.

© 2015 Elsevier B.V. All rights reserved.

#### 1. Introduction

Let M be a closed connected orientable 3-manifold, and L a link in the 3-sphere  $S^3$ . In the paper [3], A. Kawauchi introduced the bridge genus  $g_{\text{bridge}}(M)$  and the braid genus  $g_{\text{braid}}(M)$  for any M as follows. The bridge genus  $g_{\text{bridge}}(M)$  (resp. the braid genus  $g_{\text{braid}}(M)$ ) for any M is the minimal number of the bridge numbers bridge (L) (resp. the braid indexes braid (L)) for all links L such that M is obtained by the 0-surgery on  $S^3$  along L. Here bridge (L) is the bridge number of L, and braid (L) is the braid index of L. Every closed connected orientable 3-manifold is obtained by the 0-surgery on  $S^3$  along a link [3]. Thus, the bridge genus and the braid genus are invariants of M. Let  $g_H(M)$  be the Heegaard genus for any M. The following theorem holds for  $g_H(M)$ ,  $g_{\text{bridge}}(M)$  and  $g_{\text{braid}}(M)$  [5].

**Theorem 1.1.** ([5]) The following inequalities hold for every closed connected orientable 3-manifold M.

$$g_{\rm H}(M) \leq g_{\rm bridge}(M) \leq g_{\rm braid}(M)$$
.

Further, these invariants are linearly independent.

E-mail address: sokazaki@sci.osaka-cu.ac.jp.

For every lens space except the 3-sphere, the Heegaard genus is equal to one. In this paper, we consider the bridge genus and the braid genus of a lens space. Let L(p,q) be the lens space of type (p,q), where we assume 0 < q < p unless otherwise specified.

In Section 2, we prove the following lemmas.

**Lemma 1.2.** Let a be an even integer. Then the following equalities hold.

$$g_{\text{bridge}}(L(a,1)) = g_{\text{braid}}(L(a,1)) = 3$$

**Lemma 1.3.** Let a and b be even integers. Then the following equalities hold.

$$g_{\text{bridge}}(L(ab-1,b)) = g_{\text{braid}}(L(ab-1,b)) = 4$$

Let  $[a_1, a_2, \ldots, a_n]$  be the continued fraction of the quotient  $\frac{p}{a}$  given as follows.

$$\frac{p}{q} = a_1 - \frac{1}{a_2 - \frac{1}{\ddots - \frac{1}{a_n}}}.$$

We define the non-negative integer n(L(p,q)) as follows.

$$n(L(p,q)) = \min \left\{ n; \begin{bmatrix} a_1, a_2, \dots, a_n \end{bmatrix} = \frac{p'}{q'}, L(p', q') = L(p, q), \\ \text{and } a_1, a_2, \dots, a_n \text{ are non-zero even integers} \right\}.$$

In this definition, we grant that p' and q' are negative coprime integers. The following lemma gives the upper bound of the braid genus for all lens spaces.

**Lemma 1.4.** For every lens space L(p,q), the following inequality holds.

$$g_{\text{braid}}(L(p,q)) \le n(L(p,q)) + 2.$$

In Sections 3 and 4, we consider  $g_{\text{bridge}}(L(p,q))$  and  $g_{\text{braid}}(L(p,q))$  which are not obtained by Lemmas 1.2 and 1.3. By the following theorem, we have examples of a lens space whose bridge genus and braid genus are 5.

**Theorem 1.5.** For the lens space L(p,q), if n(L(p,q))=3, and p is an even integer such that  $\frac{p}{2}$  is a prime integer or the product of two (possibly, equal) prime integers, and q is not a square modulo p, then

$$g_{\text{bridge}}(L(p,q)) = g_{\text{braid}}(L(p,q)) = 5.$$

We have the following example by Theorem 1.5.

**Example 1.6.** The following equalities hold.

$$g_{\text{bridge}}(L(8,3)) = g_{\text{braid}}(L(8,3)) = 5.$$

$$g_{\text{bridge}}(L(10,3)) = g_{\text{braid}}(L(10,3)) = 5.$$

### Download English Version:

# https://daneshyari.com/en/article/6424633

Download Persian Version:

https://daneshyari.com/article/6424633

**Daneshyari.com**