Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Essential tangle decompositions of knots with tunnel number one tangles

Toshio Saito

Department of Mathematics, Joetsu University of Education, 1 Yamayashiki, Joetsu 943-8512, Japan

ARTICLE INFO

Article history: Received 30 December 2013 Received in revised form 6 February 2014 Accepted 6 February 2014 Available online 27 May 2015

MSC: 57M25 57N10

Keywords: Tangle Tunnel number Weak reduction

1. Introduction

For a positive integer m, an m-tangle (B,T) is defined to be a pair of a 3-ball B and mutually disjoint m arcs T properly embedded in B. Let K be a knot in the 3-sphere S^3 and $P \subset S^3$ a 2-sphere intersecting K in 2m points. Then P cuts S^3 into two 3-balls, say B_1 and B_2 . Since P intersects K in 2m points, we see that each B_i (i = 1, 2) intersects K in a collection of mutually disjoint m arcs, say T_i . Hence each (B_i, T_i) is an m-tangle. The decomposition $(B_1, T_1) \cup_{\mathcal{P}} (B_2, T_2)$ is called an m-tangle decomposition of (S^3, K) , where $\mathcal{P} = (P, P \cap K)$. We call \mathcal{P} a tangle sphere or an m-tangle sphere. A tangle decomposition $(B_1, T_1) \cup_{\mathcal{P}} (B_2, T_2)$ is said to be essential if \mathcal{P} is incompressible in (S^3, K) .

In previous work [3], the author defined *tunnel number*, denoted by $tnl(\cdot)$, of a tangle which is a natural generalization of tunnel number of a knot. See the next section for definitions. We here notice that a tangle (B,T) is of tunnel number zero if and only if it is a *free* tangle, i.e., the exterior of T in B is homeomorphic to a handlebody. A tangle decomposition $(B_1, T_1) \cup_{\mathcal{P}} (B_2, T_2)$ is said to be *free* if each (B_i, T_i) is a free tangle.

It is shown by Ozawa that a knot in the 3-sphere has a unique essential tangle decomposition if it admits an essential free 2-tangle decomposition. We show that Ozawa's result cannot be generalized even if a knot admits an essential 2-tangle decomposition such that one of the decomposed tangles is of tunnel number one. © 2015 Elsevier B.V. All rights reserved.

E-mail address: toshio@juen.ac.jp.

Theorem 1.1. (Ozawa [2, Theorem 1.2]) Let K be a knot in S^3 . Suppose that \mathcal{P} gives an essential free 2-tangle decomposition. Then any tangle sphere giving an essential tangle decomposition of (S^3, K) is ambient isotopic to \mathcal{P} .

The following is merely a restatement of Theorem 1.1 by using the notation $tnl(\cdot)$.

Theorem 1.2 (Restatement of Theorem 1.1). Let K be a knot in S^3 with an essential 2-tangle decomposition $(B_1, T_1) \cup_{\mathcal{P}} (B_2, T_2)$ with $\operatorname{tnl}(T_i) = 0$ for each i = 1, 2. Then any tangle sphere giving an essential tangle decomposition of (S^3, K) is ambient isotopic to \mathcal{P} .

In this paper, we show that Theorem 1.2 cannot be generalized even if a knot admits an essential 2-tangle decomposition such that one of the decomposed tangles is of tunnel number one.

Theorem 1.3. For any non-negative integer n, there is a knot K in S^3 which satisfies the following:

- (1) (S^3, K) admits an essential 2-tangle decomposition $(B_1, T_1) \cup_{\mathcal{P}} (B_2, T_2)$ with $\operatorname{tnl}(T_i) = 1$ and $\operatorname{tnl}(T_j) = n$ for (i, j) = (1, 2) or (2, 1).
- (2) (S^3, K) admits another essential 2-tangle decomposition different from the above.

2. Definitions

Throughout this paper, we work in the piecewise linear category. Let B be a sub-manifold of a manifold A. The notation Nbd(B; A) denotes a (closed) regular neighborhood of B in A. By Ext(B; A), we mean the exterior of B in A, i.e., Ext(B; A) = cl($A \setminus Nbd(B; A)$), where cl(\cdot) means the closure. The notation $|\cdot|$ indicates the number of connected components. Let M be a compact connected orientable 3-manifold with non-empty boundary. Let J be a 1-manifold properly embedded in M and F a surface properly embedded in M. Here, a surface means a connected compact 2-manifold. We always assume that a surface intersects J transversely. Set $\mathcal{M} = (M, J)$ and $\mathcal{F} = (F, F \cap J)$. For convenience, we also call \mathcal{F} a surface. A simple closed curve properly embedded in $F \setminus J$ is said to be inessential in \mathcal{F} if it bounds a disk in F intersecting J in at most one point. A simple closed curve properly embedded in \mathcal{M} if there is a disk $D \subset M \setminus J$ such that $D \cap F = \partial D$ and ∂D is essential in \mathcal{F} . Such a disk D is called a compressing disk of \mathcal{F} . We say that \mathcal{F} is incompressible in \mathcal{M} if \mathcal{F} is not compressible in \mathcal{M} .

A 3-manifold C is called a (genus g) compression body if there exists a closed surface F of genus g such that C is obtained from $F \times [0, 1]$ by attaching 2-handles along mutually disjoint loops in $F \times \{0\}$ and filling in some resulting 2-sphere boundary components with 3-handles. We denote $F \times \{1\}$ by $\partial_+ C$ and $\partial C \setminus \partial_+ C$ by $\partial_- C$. A compression body C is called a handlebody if $\partial_- C = \emptyset$. The triplet $(C_1, C_2; S)$ is called a (genus g) Heegaard splitting of M if C_1 and C_2 are (genus g) compression bodies with $C_1 \cup C_2 = M$ and $C_1 \cap C_2 = \partial_+ C_1 = \partial_+ C_2 = S$. The Heegaard genus hg(M) of M is the minimal integer g for which M admits a genus g Heegaard splitting.

A simple arc γ properly embedded in a compression body C is said to be *vertical* if γ is isotopic to an arc with {a point} × [0,1] $\subset \partial_{-}C \times [0,1]$ relative to boundary. A simple arc γ properly embedded in C is said to be *trivial* if there is a disk δ in C with $\gamma \subset \partial \delta$ and $\partial \delta \setminus \gamma \subset \partial_{+}C$. Such a disk δ is called a *bridge disk* of γ . A disjoint union of trivial arcs is said to be *mutually trivial* if they admit a disjoint union of bridge disks.

We now recall definitions of a *c*-compression body and a *c*-Heegaard splitting given by Tomova [4]. Let J be a 1-manifold properly embedded in a compact connected orientable 3-manifold M with non-empty boundary. A surface $\mathcal{F} = (F, F \cap J)$ is *c*-compressible in $\mathcal{M} = (M, J)$ if there is a disk $D \subset M \setminus J$ such

Download English Version:

https://daneshyari.com/en/article/6424641

Download Persian Version:

https://daneshyari.com/article/6424641

Daneshyari.com