Essential tangle decompositions of knots with tunnel number one tangles

Toshio Saito
Department of Mathematics, Joetsu University of Education, 1 Yamayashiki, Joetsu 943-8512, Japan

A R T I C L E I N F O

Article history:

Received 30 December 2013
Received in revised form 6 February 2014
Accepted 6 February 2014
Available online 27 May 2015

MSC:

57M25
57 N 10
Keywords:
Tangle
Tunnel number
Weak reduction

Abstract

It is shown by Ozawa that a knot in the 3 -sphere has a unique essential tangle decomposition if it admits an essential free 2 -tangle decomposition. We show that Ozawa's result cannot be generalized even if a knot admits an essential 2-tangle decomposition such that one of the decomposed tangles is of tunnel number one. © 2015 Elsevier B.V. All rights reserved.

1. Introduction

For a positive integer m, an m-tangle (B, T) is defined to be a pair of a 3 -ball B and mutually disjoint m arcs T properly embedded in B. Let K be a knot in the 3 -sphere S^{3} and $P \subset S^{3}$ a 2 -sphere intersecting K in $2 m$ points. Then P cuts S^{3} into two 3-balls, say B_{1} and B_{2}. Since P intersects K in $2 m$ points, we see that each $B_{i}(i=1,2)$ intersects K in a collection of mutually disjoint m arcs, say T_{i}. Hence each $\left(B_{i}, T_{i}\right)$ is an m-tangle. The decomposition $\left(B_{1}, T_{1}\right) \cup_{\mathcal{P}}\left(B_{2}, T_{2}\right)$ is called an m-tangle decomposition of $\left(S^{3}, K\right)$, where $\mathcal{P}=(P, P \cap K)$. We call \mathcal{P} a tangle sphere or an m-tangle sphere. A tangle decomposition $\left(B_{1}, T_{1}\right) \cup_{\mathcal{P}}\left(B_{2}, T_{2}\right)$ is said to be essential if \mathcal{P} is incompressible in $\left(S^{3}, K\right)$.

In previous work [3], the author defined tunnel number, denoted by $\operatorname{tnl}(\cdot)$, of a tangle which is a natural generalization of tunnel number of a knot. See the next section for definitions. We here notice that a tangle (B, T) is of tunnel number zero if and only if it is a free tangle, i.e., the exterior of T in B is homeomorphic to a handlebody. A tangle decomposition $\left(B_{1}, T_{1}\right) \cup_{\mathcal{P}}\left(B_{2}, T_{2}\right)$ is said to be free if each $\left(B_{i}, T_{i}\right)$ is a free tangle.

[^0]Theorem 1.1. (Ozawa [2, Theorem 1.2]) Let K be a knot in S^{3}. Suppose that \mathcal{P} gives an essential free 2 -tangle decomposition. Then any tangle sphere giving an essential tangle decomposition of $\left(S^{3}, K\right)$ is ambient isotopic to \mathcal{P}.

The following is merely a restatement of Theorem 1.1 by using the notation $\operatorname{tnl}(\cdot)$.
Theorem 1.2 (Restatement of Theorem 1.1). Let K be a knot in S^{3} with an essential 2-tangle decomposition $\left(B_{1}, T_{1}\right) \cup_{\mathcal{P}}\left(B_{2}, T_{2}\right)$ with $\operatorname{tnl}\left(T_{i}\right)=0$ for each $i=1,2$. Then any tangle sphere giving an essential tangle decomposition of $\left(S^{3}, K\right)$ is ambient isotopic to \mathcal{P}.

In this paper, we show that Theorem 1.2 cannot be generalized even if a knot admits an essential 2-tangle decomposition such that one of the decomposed tangles is of tunnel number one.

Theorem 1.3. For any non-negative integer n, there is a knot K in S^{3} which satisfies the following:
(1) $\left(S^{3}, K\right)$ admits an essential 2 -tangle decomposition $\left(B_{1}, T_{1}\right) \cup_{\mathcal{P}}\left(B_{2}, T_{2}\right)$ with $\operatorname{tnl}\left(T_{i}\right)=1$ and $\operatorname{tnl}\left(T_{j}\right)=n$ for $(i, j)=(1,2)$ or $(2,1)$.
(2) $\left(S^{3}, K\right)$ admits another essential 2-tangle decomposition different from the above.

2. Definitions

Throughout this paper, we work in the piecewise linear category. Let B be a sub-manifold of a manifold A. The notation $\operatorname{Nbd}(B ; A)$ denotes a (closed) regular neighborhood of B in A. By $\operatorname{Ext}(B ; A)$, we mean the exterior of B in A, i.e., $\operatorname{Ext}(B ; A)=\operatorname{cl}(A \backslash \operatorname{Nbd}(B ; A))$, where $\operatorname{cl}(\cdot)$ means the closure. The notation $|\cdot|$ indicates the number of connected components. Let M be a compact connected orientable 3-manifold with non-empty boundary. Let J be a 1-manifold properly embedded in M and F a surface properly embedded in M. Here, a surface means a connected compact 2-manifold. We always assume that a surface intersects J transversely. Set $\mathcal{M}=(M, J)$ and $\mathcal{F}=(F, F \cap J)$. For convenience, we also call \mathcal{F} a surface. A simple closed curve properly embedded in $F \backslash J$ is said to be inessential in \mathcal{F} if it bounds a disk in F intersecting J in at most one point. A simple closed curve properly embedded in $F \backslash J$ is said to be essential in \mathcal{F} if it is not inessential in \mathcal{F}. A surface \mathcal{F} is compressible in \mathcal{M} if there is a disk $D \subset M \backslash J$ such that $D \cap F=\partial D$ and ∂D is essential in \mathcal{F}. Such a disk D is called a compressing disk of \mathcal{F}. We say that \mathcal{F} is incompressible in \mathcal{M} if \mathcal{F} is not compressible in \mathcal{M}.

A 3-manifold C is called a (genus g) compression body if there exists a closed surface F of genus g such that C is obtained from $F \times[0,1]$ by attaching 2-handles along mutually disjoint loops in $F \times\{0\}$ and filling in some resulting 2 -sphere boundary components with 3 -handles. We denote $F \times\{1\}$ by $\partial_{+} C$ and $\partial C \backslash \partial_{+} C$ by $\partial_{-} C$. A compression body C is called a handlebody if $\partial_{-} C=\emptyset$. The triplet $\left(C_{1}, C_{2} ; S\right)$ is called a (genus g) Heegaard splitting of M if C_{1} and C_{2} are (genus g) compression bodies with $C_{1} \cup C_{2}=M$ and $C_{1} \cap C_{2}=\partial_{+} C_{1}=\partial_{+} C_{2}=S$. The Heegaard genus $\mathrm{hg}(M)$ of M is the minimal integer g for which M admits a genus g Heegaard splitting.

A simple arc γ properly embedded in a compression body C is said to be vertical if γ is isotopic to an arc with $\{$ a point $\} \times[0,1] \subset \partial_{-} C \times[0,1]$ relative to boundary. A simple arc γ properly embedded in C is said to be trivial if there is a disk δ in C with $\gamma \subset \partial \delta$ and $\partial \delta \backslash \gamma \subset \partial_{+} C$. Such a disk δ is called a bridge disk of γ. A disjoint union of trivial arcs is said to be mutually trivial if they admit a disjoint union of bridge disks.

We now recall definitions of a c-compression body and a c-Heegaard splitting given by Tomova [4]. Let J be a 1-manifold properly embedded in a compact connected orientable 3-manifold M with non-empty boundary. A surface $\mathcal{F}=(F, F \cap J)$ is c-compressible in $\mathcal{M}=(M, J)$ if there is a disk $D \subset M \backslash J$ such

https://daneshyari.com/en/article/6424641

Download Persian Version:

https://daneshyari.com/article/6424641

Daneshyari.com

[^0]: E-mail address: toshio@juen.ac.jp.
 http://dx.doi.org/10.1016/j.topol.2015.05.053
 0166-8641/© 2015 Elsevier B.V. All rights reserved.

