Contents lists available at ScienceDirect

## Topology and its Applications

www.elsevier.com/locate/topol

# On slice knots and smooth 4-manifolds

### Toshifumi Tanaka

Department of Mathematics Education, Faculty of Education, Gifu University, Yanagido 1-1, Gifu, 501-1193 Gifu, Japan

#### ARTICLE INFO

Article history: Received 20 December 2013 Received in revised form 27 March 2014 Accepted 27 March 2014 Available online 28 May 2015

MSC: 57M27 57M50

Keywords: Slice knot Exotic Smooth 4-manifold

#### 1. Introduction

For  $n \neq 4$ , the *n*-dimensional Euclidean space  $\mathbb{R}^n$  admits a unique smooth structure. However there exist uncountably many smooth structures on  $\mathbb{R}^4$  [7]. Moreover, every punctured, smooth, closed 4-manifold has uncountably many distinct smooth structures [6,9]. This emphasizes the special behavior of 4-manifolds.

We say that a smooth 4-manifold X has an *exotic smooth structure* if there exists a smooth 4-manifold X' which is homeomorphic to X, but not diffeomorphic to X. We consider the following problem.

Problem. Does there exist an exotic smooth structure on a given 4-manifold?

In recent years there have been numerous works on exotic smooth structures on a closed 4-manifold which is homeomorphic to  $\#m\mathbb{CP}^2 \#n\mathbb{CP}^2$  where *m* and *n* are finite. (Here  $\#m\mathbb{CP}^2 \#n\mathbb{CP}^2$  means the connected sum of  $m\mathbb{CP}^2$ 's and  $n\mathbb{CP}^2$ 's.)









As a consequence of Donaldson's result, concerning the intersection forms of smooth 4-manifolds, we show that there exists an exotic smooth structure on  $\sharp \infty \mathbb{CP}^2$ . © 2015 Elsevier B.V. All rights reserved.

E-mail address: tanakat@gifu-u.ac.jp.

Fang showed that if M is a closed 3-dimensional topological flat submanifold of  $\#n\mathbb{CP}^2$ , then there exist uncountably many smooth structures on  $M \times \mathbb{R}$  which are all smoothly embedded into  $\#n\mathbb{CP}^2$  [3]. Then this result was generalized for any open 4-manifold, topologically embedded in  $\#n\mathbb{CP}^2$  [10, p. 383].

Let M be an oriented, connected, simply connected, smooth 4-manifold. We define the connected sum of infinitely many M's,  $\sharp \infty M$ , as the universal covering space of  $T^4 \sharp M$  where  $T^4$  is the 4-torus. In this paper, we show the following.

**Theorem 1.1.** Any non-compact, connected, oriented, smooth 4-submanifold of  $\sharp \infty \mathbb{CP}^2$  admits an exotic smooth structure.

Throughout this paper, a manifold is always assumed to be oriented. This paper is organized as follows. In Section 2, we shall define a *z-exotic knot* in a smooth 4-manifold and show that any non-compact, connected, smooth 4-manifold with such a knot, admits an exotic smooth structure. In Section 3, we prove Theorem 1.1.

#### 2. Smooth structures on non-compact 4-manifolds

Let M and N be smooth manifolds. For a positive integer n, we denote by  $M \sharp N$  the connected sum of M and N and by  $\sharp nM$  the connected sum of n copies of the same manifold M. We denote by Int M the interior of M and by  $\partial M$  the boundary of M.

**Definition 2.1.** Let V be a smooth and oriented 4-manifold. If there is a 4-ball  $B^4$  smoothly embedded in V such that  $\partial B^4$  contains a knot K and there is a 2-disk smoothly (resp. topologically locally flatly) properly embedded in  $V \setminus \operatorname{Int} B^4$  such that the boundary of the disk is K and the disk is trivial in  $H_2(V \setminus \operatorname{Int} B^4, \partial(V \setminus \operatorname{Int} B^4); \mathbb{Z})$  (that is the disk is *null-homologous*), then we say that K is *slice* (resp. *topologically slice*) in V. We call the embedded disk a *slice disk* (resp. a *topological slice disk*).

Clearly, if a knot is slice in V, then the knot is also topologically slice in V.

**Definition 2.2.** We say that a knot K is *z*-exotic in V if V is a smooth and oriented 4-manifold and K is topologically slice in V, but not slice in V.

The term "z-exotic" comes from the coefficient  $\mathbb{Z}$  of the homology in Definition 2.1.

**Proposition 2.3.** Any non-compact, connected, oriented, smooth 4-manifold which has a z-exotic knot K admits at least two smooth structures.

**Proof.** Let M be a non-compact, connected, oriented, smooth 4-manifold. If M admits a z-exotic knot K, then there exists a smooth embedded 4-ball  $B^4$  and a topological slice disk D for  $K \subset \partial B^4$  with a topological embedding  $\lambda : D^2 \times D^2 \to M \setminus \text{Int } B^4$  ( $\lambda(D^2 \times \{0\}) = D$ ) such that D represents zero in  $H_2(M \setminus \text{Int } B^4, \partial(M \setminus \text{Int } B^4); \mathbb{Z})$ . The (standard) smooth structures on  $D^2 \times D^2$  and the 4-ball induce a smooth structure on  $\lambda(D^2 \times D^2) \cup B^4$  by gluing them along the intersection. (Here we use uniqueness of smoothings on 3-manifolds.) We denote the resultant smooth 4-manifold by  $N_0$  as in Fig. 1.

Note that there exists a smooth structure on the topological manifold  $M \setminus \text{Int}(\lambda(D^2 \times D^2) \cup B^4)$  because it is non-compact and connected (cf. [10, p. 377] or [5, §8]). We denote the smooth manifold by N. Now gluing  $N_0$  and N along their boundaries, we have a new smooth 4-manifold, denoted by  $\overline{M}$ , such that  $\overline{M}$ is homeomorphic to M because the gluing homeomorphism is isotopic to diffeomorphism by uniqueness of smoothings on 3-manifolds [10, p. 522]. If  $\overline{M}$  were diffeomorphic to M, then K could be slice in M. This contradicts to the assumption.  $\Box$  Download English Version:

https://daneshyari.com/en/article/6424671

Download Persian Version:

https://daneshyari.com/article/6424671

Daneshyari.com