ELSEVIER

Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On the ER(2)-cohomology of some odd-dimensional projective spaces

Romie Banerjee

A360 School of Mathematics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai, 400005, India

ARTICLE INFO

Article history: Received 2 March 2013 Received in revised form 15 May 2013 Accepted 18 May 2013

MSC: 55N20 55N22 55N91

Keywords: Johnson-Wilson theory Homotopy fixed points

ABSTRACT

Kitchloo and Wilson have used the homotopy fixed points spectrum ER(2) of the classical complex-oriented Johnson–Wilson spectrum E(2) to deduce certain non-immersion results for real projective spaces. ER(n) is a $2^{n+2}(2^n-1)$ -periodic spectrum. The key result to use is the existence of a stable cofibration $\Sigma^{\lambda(n)}ER(n) \to ER(n) \to E(n)$ connecting the real Johnson–Wilson spectrum with the classical one. The value of $\lambda(n)$ is $2^{2n+1}-2^{n+2}+1$. We extend Kitchloo–Wilson's results on non-immersions of real projective spaces by computing the second real Johnson–Wilson cohomology ER(2) of the odd-dimensional real projective spaces RP^{16K+9} . This enables us to solve certain non-immersion problems of projective spaces using obstructions in ER(2)-cohomology.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The spectrum MU of complex cobordism comes naturally equipped with an action of $\mathbb{Z}/2$ by complex conjugation. Hu and Kriz in [4] have used this action to construct genuine $\mathbb{Z}/2$ equivariant spectra $E\mathbb{R}(n)$ from the complex-oriented spectra E(n). Kitchloo and Wilson in [6] have used the homotopy fixed point spectrum of this to solve certain non-immersion problems of real projective spaces. The homotopy fixed point spectrum ER(n) is $2^{n+2}(2^n-1)$ -periodic compared to the $2(2^n-1)$ -periodic E(n). The spectrum ER(1) is $KO_{(2)}$ and E(1) is $KO_{(2)}$.

Kitchloo and Wilson have demonstrated the existence of a stable cofibration connecting E(n) and ER(n),

$$\Sigma^{\lambda(n)} ER(n) \xrightarrow{X} ER(n) \to E(n) \tag{1}$$

where $\lambda(n) = 2^{2n+1} - 2^{n+2} + 1$. This leads to a Bockstein spectral sequence for *x*-torsion. It is known that $x^{2^{n+1}-1} = 0$ so there can be only $2^{n+1} - 1$ differentials. For the case of our interest n = 2 there are only 7 differentials.

From [5] we know that if there is an immersion of RP^b to \mathbb{R}^c then there is an axial map

$$RP^b \times RP^{2^L - c - 2} \to RP^{2^L - b - 2} \tag{2}$$

For b=2n and c=2k Don Davis shows in [2] that there is no such map when $n=m+\alpha(m)-1$ and $k=2m-\alpha(m)$, where $\alpha(m)$ is the number of ones in the binary expression of m by finding an obstruction to James's map (2) in E(2)-cohomology. Kitchloo and Wilson get new non-immersion results by computing obstructions in E(2)-cohomology. In this paper we extend Kitchloo–Wilson's results by computing the E(2)-cohomology of the odd projective space R(2)-cohomology us newer non-immersion results. The main results are the following.

Theorem 1.1. A 2-adic basis of $ER(2)^{8*}(RP^{16K+9}, *)$ is given by the elements

$$\alpha^{k}u^{j} \quad (k \geqslant 0, \ 1 \leqslant j \leqslant 8K + 4)$$

$$v_{2}^{4}\alpha^{k}u^{j} \quad (k \geqslant 1, \ 1 \leqslant j \leqslant 8K + 4)$$

$$v_{2}^{4}u^{j} \quad (4 \leqslant j \leqslant 8K + 4)$$

$$x\alpha^{k}i_{16K+9}, \quad xv_{2}^{4}\alpha^{k}i_{16K+9} \quad (k \geqslant 0)$$

Theorem 1.2. Let $\alpha(m)$ be the number of ones in the binary expansion of m. If $(m, \alpha(m)) \equiv (6, 2)$ or (1, 0) mod 8, $RP^{2(m+\alpha(m)-1)}$ does not immerse in $\mathbb{R}^{2(2m-\alpha(m))+1}$.

This shall give us new non-immersions that are often new and different from those of [6] and [7]. Using Davis's table [1] the first new result is $RP^{2^{13}-2}$ does not immerse in $\mathbb{R}^{2^{14}-59}$.

2. The Bockstein spectral sequence

The results obtained in this section can be found in [6]. We reproduce it here for the convenience of the reader. We have the stable cofibration

$$\Sigma^{\lambda(n)}ER(n) \xrightarrow{x} ER(n) \to E(n)$$

where $x \in ER(n)^{-\lambda(n)}$ and $\lambda(n) = 2^{2n+1} - 2^{n+2} + 1$. The fibration gives us a long exact sequence

$$ER(n)^*(X) \xrightarrow{\chi} ER(n)^*(X)$$

$$E(n)^*(X)$$

$$(3)$$

where x lowers the degree by $\lambda(n)$ and ∂ raises the degree by $\lambda(n) + 1$. This leads to the Bockstein spectral sequence, which will completely determine $M = ER(n)^*(X)/(x)$ as a subring of $E(n)^*(X)$. We know that $x^{2^{n+1}-1} = 0$ so there can be only $2^{n+1} - 1$ differentials.

We filter M,

$$0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_{2^{n+1}-1} = M$$

by submodules

$$M_r = \operatorname{Ker} \left[x^r : \frac{ER(n)^*(X)}{x} \to \frac{x^r ER(n)^*(X)}{x^{r+1}} \right]$$

so that M_r/M_{r-1} gives the χ^r -torsion elements of $ER(n)^*(X)$ that are non-zero in M.

We collect the basic facts about the spectral sequence in the following theorem. E(n) is a complex-oriented spectrum with a complex conjugation action. Denote this action by c.

Theorem 2.1. ([6, Theorem 4.2]) In the Bockstein spectral sequence for $ER(n)^*(X)$

1. The exact couple (3) gives rise to a spectral sequence, E^r , of $ER(n)^*$ -modules, starting with

$$E^1 \simeq E(n)^*(X)$$

- 2. $E^{2^{n+1}} = 0$.
- 3. Im $d^r \simeq M_r/M_{r-1}$.
- 4. The degree of d^r is $r\lambda(n) + 1$.
- 5. $d^{r}(ab) = d^{r}(a)b + c(a)d^{r}(b)$.
- 6. $d^{1}(z) = v_{n}^{-(2^{n}-1)}(1-c)(z)$ where $c(v_{i}) = -v_{i}$.
- 7. If c(z) = z in E^1 , then $d^1(z) = 0$. If c(z) = z in E^r then $d^r(z^2) = 0$.
- 8. The following are all vector spaces over $\mathbb{Z}/2$:

$$M_i/M_i$$
 $(j \geqslant i > 0)$ and E^r $(r \geqslant 2)$

Download English Version:

https://daneshyari.com/en/article/6424710

Download Persian Version:

https://daneshyari.com/article/6424710

<u>Daneshyari.com</u>