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use is the existence of a stable cofibration X*™ER(n) — ER(n) — E(n) connecting the real

MSC: Johnson-Wilson spectrum with the classical one. The value of A(n) is 22"+1 — 272 1 1,
55N20 We extend Kitchloo-Wilson’s results on non-immersions of real projective spaces by
55N22 computing the second real Johnson-Wilson cohomology ER(2) of the odd-dimensional real
55N91 projective spaces RP'6X*9_ This enables us to solve certain non-immersion problems of

projective spaces using obstructions in ER(2)-cohomology.
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1. Introduction

The spectrum MU of complex cobordism comes naturally equipped with an action of Z/2 by complex conjugation.
Hu and Kriz in [4] have used this action to construct genuine Z/2 equivariant spectra ER(n) from the complex-oriented
spectra E(n). Kitchloo and Wilson in [6] have used the homotopy fixed point spectrum of this to solve certain non-
immersion problems of real projective spaces. The homotopy fixed point spectrum ER(n) is 2"+2(2" — 1)-periodic compared
to the 2(2" — 1)-periodic E(n). The spectrum ER(1) is KOy and E(1) is KU o).

Kitchloo and Wilson have demonstrated the existence of a stable cofibration connecting E(n) and ER(n),

S*MERM) -5 ER(n) — E(n) (1)

where A(n) = 221 — 2m+2 4 1. This leads to a Bockstein spectral sequence for x-torsion. It is known that x2'"' =1 =0 so
there can be only 2"*1 — 1 differentials. For the case of our interest n = 2 there are only 7 differentials.
From [5] we know that if there is an immersion of RP? to R¢ then there is an axial map

RPY x RP?'—¢=2 — Rp?' b2 2)

For b =2n and ¢ = 2k Don Davis shows in [2] that there is no such map when n=m+«(m) — 1 and k = 2m — «(m), where
o (m) is the number of ones in the binary expression of m by finding an obstruction to James’s map (2) in E(2)-cohomology.
Kitchloo and Wilson get new non-immersion results by computing obstructions in ER(2)-cohomology. In this paper we
extend Kitchloo-Wilson’s results by computing the ER(2)-cohomology of the odd projective space RP1®X*9_ This will give us
newer non-immersion results. The main results are the following.
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Theorem 1.1. A 2-adic basis of ER(2)%* (RP16K+9  «) is given by the elements

oful (k>0,1<j<8K+4)
vidkul (k>1,1<j<8K+4)
viw (4<j<8K+4)

ks 4 k;
xo“i1K49, XVo0itek4e (K >0)

Theorem 1.2. Let «(m) be the number of ones in the binary expansion of m. If (m, a(m)) = (6, 2) or (1,0) mod 8, RP2M+am—1)
does not immerse in R2@m—am)+1,

This shall give us new non-immersions that are often new and different from those of [6] and [7]. Using Davis’s table
[1] the first new result is RP?"~2 does not immerse in R2"*~59,

2. The Bockstein spectral sequence

The results obtained in this section can be found in [6]. We reproduce it here for the convenience of the reader.
We have the stable cofibration

S*MER(M) -5 ER(n) — E(n)

where x € ER()~*™ and A(n) = 22"*1 — 2"+2 4 1. The fibration gives us a long exact sequence

ER(m*(X) - ER(m)*(X) (3)

Em*(X)

where x lowers the degree by A(n) and 0 raises the degree by A(n)+ 1. This leads to the Bockstein spectral sequence, which
will completely determine M = ER(n)*(X)/(x) as a subring of E(n)*(X). We know that x2""'=1 =0 so there can be only
2+l _ 1 differentials.

We filter M,

0=MoCMiCMyC---CMy+1_1=M

by submodules

ER(n)*(X X"ER(n)* (X
Mr:Ker[xT: (m*(X) (m)*( )}
X xI+1
so that M,/M,_1 gives the x"-torsion elements of ER(n)*(X) that are non-zero in M.
We collect the basic facts about the spectral sequence in the following theorem. E(n) is a complex-oriented spectrum

with a complex conjugation action. Denote this action by c.

Theorem 2.1. ([6, Theorem 4.2]) In the Bockstein spectral sequence for ER(n)*(X)
1. The exact couple (3) gives rise to a spectral sequence, E", of ER(n)*-modules, starting with
E'~ Em)*(X)

E2n+1 —0.

Imd" >~ M;/M;_1.

. The degree of d" is rA(n) + 1.

. d"(ab) =d"(a)b + c(a)d" (b).

dl(z) = v,;(znfl)(l — ¢)(2) where c(vj) = —v;.

L Ifc(z) =zin EY, thend'(z) =0.If c(z) = zin E" then d"(z%) = 0.
. The following are all vector spaces over 7./2:

PP U A WN

Mj/M; (jzi>0) and E" (r>=2)
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