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Kitchloo and Wilson have used the homotopy fixed points spectrum ER(2) of the classical
complex-oriented Johnson–Wilson spectrum E(2) to deduce certain non-immersion results
for real projective spaces. ER(n) is a 2n+2(2n − 1)-periodic spectrum. The key result to
use is the existence of a stable cofibration Σλ(n)ER(n) → ER(n) → E(n) connecting the real
Johnson–Wilson spectrum with the classical one. The value of λ(n) is 22n+1 − 2n+2 + 1.
We extend Kitchloo–Wilson’s results on non-immersions of real projective spaces by
computing the second real Johnson–Wilson cohomology ER(2) of the odd-dimensional real
projective spaces RP16K+9. This enables us to solve certain non-immersion problems of
projective spaces using obstructions in ER(2)-cohomology.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The spectrum MU of complex cobordism comes naturally equipped with an action of Z/2 by complex conjugation.
Hu and Kriz in [4] have used this action to construct genuine Z/2 equivariant spectra ER(n) from the complex-oriented
spectra E(n). Kitchloo and Wilson in [6] have used the homotopy fixed point spectrum of this to solve certain non-
immersion problems of real projective spaces. The homotopy fixed point spectrum ER(n) is 2n+2(2n − 1)-periodic compared
to the 2(2n − 1)-periodic E(n). The spectrum ER(1) is KO(2) and E(1) is KU(2) .

Kitchloo and Wilson have demonstrated the existence of a stable cofibration connecting E(n) and ER(n),

Σλ(n)ER(n)
x−→ ER(n) → E(n) (1)

where λ(n) = 22n+1 − 2n+2 + 1. This leads to a Bockstein spectral sequence for x-torsion. It is known that x2n+1−1 = 0 so
there can be only 2n+1 − 1 differentials. For the case of our interest n = 2 there are only 7 differentials.

From [5] we know that if there is an immersion of RPb to Rc then there is an axial map

RPb × RP2L−c−2 → RP2L−b−2 (2)

For b = 2n and c = 2k Don Davis shows in [2] that there is no such map when n = m +α(m)− 1 and k = 2m −α(m), where
α(m) is the number of ones in the binary expression of m by finding an obstruction to James’s map (2) in E(2)-cohomology.
Kitchloo and Wilson get new non-immersion results by computing obstructions in ER(2)-cohomology. In this paper we
extend Kitchloo–Wilson’s results by computing the ER(2)-cohomology of the odd projective space RP16K+9. This will give us
newer non-immersion results. The main results are the following.
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Theorem 1.1. A 2-adic basis of ER(2)8∗(RP16K+9,∗) is given by the elements

αku j (k � 0, 1 � j � 8K + 4)

v4
2α

ku j (k � 1, 1 � j � 8K + 4)

v4
2u j (4 � j � 8K + 4)

xαki16K+9, xv4
2α

ki16K+9 (k � 0)

Theorem 1.2. Let α(m) be the number of ones in the binary expansion of m. If (m,α(m)) ≡ (6,2) or (1,0) mod 8, RP2(m+α(m)−1)

does not immerse in R2(2m−α(m))+1 .

This shall give us new non-immersions that are often new and different from those of [6] and [7]. Using Davis’s table
[1] the first new result is RP213−2 does not immerse in R214−59.

2. The Bockstein spectral sequence

The results obtained in this section can be found in [6]. We reproduce it here for the convenience of the reader.
We have the stable cofibration

Σλ(n)ER(n)
x−→ ER(n) → E(n)

where x ∈ ER(n)−λ(n) and λ(n) = 22n+1 − 2n+2 + 1. The fibration gives us a long exact sequence

ER(n)∗(X)
x ER(n)∗(X)

ρ

E(n)∗(X)

∂

(3)

where x lowers the degree by λ(n) and ∂ raises the degree by λ(n)+ 1. This leads to the Bockstein spectral sequence, which
will completely determine M = ER(n)∗(X)/(x) as a subring of E(n)∗(X). We know that x2n+1−1 = 0 so there can be only
2n+1 − 1 differentials.

We filter M ,

0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ M2n+1−1 = M

by submodules

Mr = Ker

[
xr : ER(n)∗(X)

x
→ xrER(n)∗(X)

xr+1

]

so that Mr/Mr−1 gives the xr -torsion elements of ER(n)∗(X) that are non-zero in M .
We collect the basic facts about the spectral sequence in the following theorem. E(n) is a complex-oriented spectrum

with a complex conjugation action. Denote this action by c.

Theorem 2.1. ([6, Theorem 4.2]) In the Bockstein spectral sequence for ER(n)∗(X)

1. The exact couple (3) gives rise to a spectral sequence, Er , of ER(n)∗-modules, starting with

E1 � E(n)∗(X)

2. E2n+1 = 0.
3. Im dr � Mr/Mr−1 .
4. The degree of dr is rλ(n) + 1.
5. dr(ab) = dr(a)b + c(a)dr(b).

6. d1(z) = v−(2n−1)
n (1 − c)(z) where c(vi) = −vi .

7. If c(z) = z in E1 , then d1(z) = 0. If c(z) = z in Er then dr(z2) = 0.
8. The following are all vector spaces over Z/2:

M j/Mi ( j � i > 0) and Er (r � 2)
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