Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Strongly complete almost maximal left invariant topologies on groups

^a Department of Mathematics, University of Puerto Rico, PO Box 70377, San Juan, PR 00936-8377, USA
^b School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa

ARTICLE INFO

Article history: Received 26 March 2013 Received in revised form 5 June 2013 Accepted 8 June 2013

MSC: primary 22A15, 54H11 secondary 22A05, 54G05

Keywords: Stone–Čech compactification Ultrafilter Idempotent Almost maximal topological group Strongly complete left invariant topology Maximal principal left ideal

1. Introduction

*

Corresponding author.

Throughout the paper, *G* will be an arbitrary countably infinite discrete group.

The operation of *G* extends to the Stone–Čech compactification βG of *G* so that for each $a \in G$, the left translation $\beta G \ni x \mapsto ax \in \beta G$ is continuous, and for each $q \in \beta G$, the right translation $\beta G \ni x \mapsto xq \in \beta G$ is continuous. We take the points of βG to be the ultrafilters on *G*, the principal ultrafilters being identified with the points of *G*, and $G^* = \beta G \setminus G$. The topology of βG is generated by taking as a base the subsets $\overline{A} = \{p \in \beta G: A \in p\}$ where $A \subseteq G$. For $p, q \in \beta G$, the ultrafilter pq has a base consisting of subsets of the form $\bigcup_{x \in A} xB_x$ where $A \in p$ and $B_x \in q$. See [1] for more information about βG .

A topology on *G* is *left invariant* if left translations are continuous. All topologies are assumed to satisfy the T_1 separation axiom. Every left invariant topology \mathcal{T} on *G* determines a closed subsemigroup $\text{Ult}(\mathcal{T}) \subseteq \beta G$ consisting of all nonprincipal ultrafilters on *G* converging to 1 in \mathcal{T} (see [9, Section 7.1]). It is called the *ultrafilter semigroup* of \mathcal{T} . A left invariant topology is *maximal* (*almost maximal*) if its ultrafilter semigroup is a singleton (finite). Not each closed subsemigroup of G^* is the ultrafilter semigroup of a left invariant topology. However, every finite subsemigroup is [7, Proposition 2.4]. If $S \subseteq G^*$ is a finite subsemigroup and \mathcal{T} is the left invariant topology on *G* with $\text{Ult}(\mathcal{T}) = S$ (that is, the neighborhoods of 1 in \mathcal{T} are the subsets of the form $\bigcup_{p \in S} A_p \cup \{1\}$ where $A_p \in p$ for each $p \in S$), then \mathcal{T} is regular if and only if for every $p \in \beta G \setminus (S \cup \{1\}), (pS) \cap S = \emptyset$ [7, Proposition 2.12]. In particular, if $p \in G^*$ is an idempotent and \mathcal{T} is the left invariant

ABSTRACT

Let *G* be a countably infinite group. A topology on *G* is left invariant if left translations are continuous. A left invariant topology is strongly complete if it is regular and for every partition $\{U_n: n < \omega\}$ of *G* into open sets, there is a neighborhood *V* of 1 such that for every $x \in G$, $\{n < \omega: (xV) \cap U_n \neq \emptyset\}$ is finite. We show that assuming MA, for every $n \in \mathbb{N}$, there is a strongly complete left invariant topology \mathcal{T} on *G* with exactly *n* nonprincipal ultrafilters converging to 1, and in the case $G = \bigoplus_{\omega} \mathbb{Z}_2$, \mathcal{T} can be chosen to be a group topology. We also show that it is consistent with ZFC that if *G* can be embedded algebraically into a compact group, then there are no such topologies on *G*.

© 2013 Elsevier B.V. All rights reserved.

E-mail addresses: valentin.keyantuo1@upr.edu (V. Keyantuo), yevhen.zelenyuk@wits.ac.za (Y. Zelenyuk).

¹ The second author was supported by NRF grant FA2007041200005 and the John Knopfmacher Centre for Applicable Analysis and Number Theory.

^{0166-8641/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.topol.2013.06.003

topology on *G* with $Ult(\mathcal{T}) = \{p\}$, then \mathcal{T} is regular if and only if for every $q \in G^* \setminus \{p\}$, $qp \neq p$. Such idempotents are called *strongly right maximal*.

The most common finite subsemigroups of G^* are *bands*, that is, semigroups of idempotents. The simplest examples of bands are *left zero* semigroups, defined by the identity xy = x, *right zero* semigroups, defined by the identity xy = y, and *chains of idempotents*, with respect to the order $x \leq y$ if and only if xy = yx = x. The direct product of a left zero semigroup and a right zero semigroup is called a *rectangular* semigroup. Each band is a disjoint union of its maximal rectangular subsemigroups called *rectangular components* and these are partially ordered by the relation $P \leq Q$ if and only if $PQ \subseteq P$, equivalently $QP \subseteq P$.

An object *P* in some category is a *projective* if for every morphism $f : P \to Q$ and for every surjective morphism $g : R \to Q$, there exists a morphism $h : P \to R$ such that $g \circ h = f$. We say that an object *P* is an *absolute coretract* if for every surjective morphism $g : R \to P$ there exists a morphism $h : P \to R$ such that $g \circ h = id_P$. Obviously, each projective is an absolute coretract. In many categories these notions coincide but not in all. Let \mathfrak{F} and \mathfrak{C} denote the categories of finite semigroups and compact Hausdorff right topological semigroups, respectively. Then the finite absolute coretracts in \mathfrak{C} are the same as the projectives in \mathfrak{F} , and these are certain chains of rectangular bands, in particular, the finite left (right) zero semigroups and chains of idempotents are such [6].

For every regular almost maximal left invariant topology \mathcal{T} on G, $S = \text{Ult}(\mathcal{T})$ is a projective in \mathcal{F} [7, Theorem 4.1]. Assuming Martin's Axiom (MA), for every finite absolute coretract S in \mathfrak{C} , there is a regular left invariant topology \mathcal{T} on G with $\text{Ult}(\mathcal{T})$ isomorphic to S, and in the case $G = \bigoplus_{\omega} \mathbb{Z}_2$, \mathcal{T} can be chosen to be a group topology (that is, a topology making the group a topological group) [7, Theorem 5.2 and Lemma 6.10]. Every countable almost maximal topological group contains an open Boolean subgroup [9, Theorem 10.15], and its existence cannot be established in ZFC, the system of usual axioms of set theory [9, Corollary 10.17]. However, for every $n \in \mathbb{N}$, there is in ZFC a regular left invariant topology \mathcal{T} on G with Ult(\mathcal{T}) being a chain of n idempotents [7, Theorem 6.1].

Let \mathcal{T} be a left invariant topology on G. A filter \mathcal{F} on G is \mathcal{T} -fundamental if for every neighborhood U of 1, there is $x \in G$ such that $xU \in \mathcal{F}$. We say that \mathcal{T} is *complete* if every \mathcal{T} -fundamental filter (equivalently, \mathcal{T} -fundamental nonprincipal ultrafilter) converges. Notice that in the case where \mathcal{T} is a group topology, these notions coincide with the usual ones (with respect to the left uniformity).

Lemma 1.1. Let \mathcal{T} be a left invariant topology on G and let $S = \text{Ult}(\mathcal{T})$. Then \mathcal{T} is complete if and only if for every $p, q \in G^*$, $pq \in S$ implies that $q = aq_0$ for some $q_0 \in S$ and $a \in G$.

Proof. Necessity. Let $p, q \in G^*$ and suppose that $pq \in S$. Then for every neighborhood U of 1 in \mathcal{T} , there is $x_U \in G$ such that $x_U q \in U$, equivalently $x_U^{-1}U \in q$, so q is \mathcal{T} -fundamental. Since \mathcal{T} is complete, q converges to some $a \in G$. Hence, $q = aq_0$ for some $q_0 \in S$.

Sufficiency. Let q be a \mathcal{T} -fundamental nonprincipal ultrafilter on G. For every neighborhood U of 1 in \mathcal{T} , pick $x_U \in G$ such that $x_U U \in q$, equivalently $U \in x_U^{-1}q$. Let p be an ultrafilter on G extending the family of subsets

 $\{x_{V}^{-1}: V \text{ is a neighborhood of 1 contained in } U\},\$

where *U* runs over neighborhoods of 1. Then pq converges to 1, so $pq \in S$ and $p \in G^*$. But then $q = aq_0$ for some $q_0 \in S$ and $a \in G$. Hence, q converges to a. \Box

Corollary 1.2. Let \mathcal{T} be an almost maximal left invariant topology on G and let $S = Ult(\mathcal{T})$. Then \mathcal{T} is regular and complete if and only if

(1) for every $a \in G \setminus \{1\}$, $(aS) \cap S = \emptyset$, and

(2) for every $p, q \in G^*$, $pq \in S$ implies that $q = bq_0$ and $p = p_0 b^{-1}$ for some $p_0, q_0 \in S$ and $b \in G$.

Proof. Necessity. (1) means that \mathcal{T} is Hausdorff [7, Proposition 2.5]. We need to check (2). Since \mathcal{T} is complete, by Lemma 1.1, $q = bq_0$ for some $q_0 \in S$ and $b \in G$. Then since \mathcal{T} is regular and $pbq_0 \in (pbS) \cap S$, $p_0 = pb \in S$, so $p = p_0b^{-1}$.

Sufficiency. That \mathcal{T} is complete follows from (2) and Lemma 1.1. To see that \mathcal{T} is regular, suppose that $pq \in S$ for some $p \in \beta G$ and $q \in S$. If $p \in G$, then p = 1 by (1). Let $p \in G^*$. Then by (2), $q = bq_0$ and $p = p_0b^{-1}$ for some $p_0, q_0 \in S$ and $b \in G$. Since $q \in S$, b = 1, so $p = p_0 \in S$. \Box

For maximal left invariant topologies Corollary 1.2 simplifies, since in this case condition (1) is always satisfied (by [1, Theorem 3.34]).

We say that an idempotent $p \in G^*$ is absolutely maximal if for every $q, r \in G^*$, p = qr implies that r = ap and $q = pa^{-1}$ for some $a \in G$.

Corollary 1.3. Let \mathcal{T} be a maximal left invariant topology on G and let $Ult(\mathcal{T}) = \{p\}$. Then \mathcal{T} is regular and complete if and only if p is absolutely maximal.

Download English Version:

https://daneshyari.com/en/article/6424727

Download Persian Version:

https://daneshyari.com/article/6424727

Daneshyari.com