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We study a class of graph foliated spaces, or graph matchbox manifolds, initially con-
structed by Kenyon and Ghys. For graph foliated spaces we introduce a quantifier of
dynamical complexity which we call its level. We develop the fusion construction, which
allows us to associate to every two graph foliated spaces a third one which contains the
former two in its closure. Although the underlying idea of the fusion is simple, it gives us a
powerful tool to study graph foliated spaces. Using fusion, we prove that there is a hierar-
chy of graph foliated spaces at infinite levels. We also construct examples of graph foliated
spaces with various dynamical and geometric properties.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A matchbox manifold is a compact connected metrizable space M such that each point x ∈ M has a neighborhood home-
omorphic to a product space Ux × Nx , where Ux ⊂ R

n is open and Nx is a compact totally disconnected space. The term
‘matchbox manifold’ originates from the works of Aarts and Martens [2], Aarts and Oversteegen [1] for the case when n = 1,
when local charts can be thought of as ‘boxes of matches’. The most well-studied classes of examples of matchbox manifolds
are weak solenoids [25,15], generalized solenoids [35], and tiling spaces of aperiodic tilings with finite local complexity (see,
for instance, [29], or [5] for a more general type of tilings). In this paper we consider a third class of examples, which we
call graph matchbox manifolds. This construction was introduced by Kenyon and Ghys [16], and later generalized by Blanc [6],
Lozano Rojo [22], Alcalde Cuesta, Lozano Rojo and Macho Stadler [3].

Remark 1.1. (On the use of terminology.) The notion of a matchbox manifold is essentially the same as that of a lamination.
The term ‘lamination’ appears in the literature in two slightly different contexts: in low-dimensional topology, a lamination
is a decomposition into leaves of a closed subset of a manifold; in holomorphic dynamics, Sullivan [33] introduced Riemann
surface laminations as compact topological spaces locally homeomorphic to a complex disk times a Cantor set. An embed-
ding into a manifold is not required in the latter context, and a matchbox manifold is a lamination in this terminology. The
concept of a foliated space as a generalization of a foliated manifold was introduced in the book by Moore and Schochet [26],
where a foliated space is defined as a separable metrizable space locally homeomorphic to a product of a disk in R

n and
a separable metrizable space. In this terminology, a matchbox manifold is a foliated space with specific properties, i.e. it is
a compact foliated space with totally disconnected transversals. In the present paper we follow terminology of Candel and
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Conlon [8], reserving the word ‘lamination’ for a foliated space embedded in a manifold. We then use the term ‘matchbox
manifold’ to distinguish a class of foliated spaces which are compact and have totally disconnected transversals.

Let G be a finitely generated group with a non-symmetric set of generators G0, that is, if h ∈ G0 then h−1 /∈ G0. Let G be
the Cayley graph of G , and X be the set of all infinite connected subtrees of G containing the identity e. Each subtree T is
equipped with a standard complete length metric d, and the pair (T , e) is a pointed metric space. The set X , endowed with
the Gromov–Hausdorff metric dGH [7], is a compact totally disconnected space [6,16,22]. One can define a partial action
of the free group Fn on X , where n is the cardinality of the set of generators G0. This action gives rise to a pseudogroup
G on X , and an important feature of the construction is that the pseudogroup dynamical system (X,G) can be realized
as the holonomy pseudogroup of a smooth foliated space MG with two-dimensional leaves [6,16,22]. By this construction,
for (T , e) ∈ X the corresponding leaf LT ⊂ MG can be thought of as the two-dimensional boundary of the thickening of a
quotient graph of T , where the quotient map is determined by the geometry of T .

Definition 1.2. A graph matchbox manifold is the closure M= L of a leaf L in MG , that is, M is a closed saturated transitive
subset of MG .

1.1. Hierarchies of graph matchbox manifolds

In previous works the construction of Kenyon and Ghys was mostly used to produce examples of matchbox manifolds
with specific geometric and ergodic properties. Ghys [16], see also [3], showed that if G = Z

2 then MZ2 contains a leaf L
such that the matchbox manifold M = L is minimal and has leaves with different conformal structures. Lozano Rojo [23]
studied minimal examples in the case G = Z

2 from the point of view of ergodic theory. In the case where G = F3, a free
group on three generators, Blanc [6] found an example of a graph matchbox manifold containing leaves with any possible
number of ends.

In this paper we study a partial order on the corresponding foliated space MG , given by inclusions. The following basic
observation allows to restrict our attention to the case G = Fn and the space of graph matchbox manifolds Mn .

Theorem 1.3. Given a group G with a set of generators G0 of cardinality at most n, there exists a foliated embedding

Φ : MG →Mn,

where MG and Mn are foliated spaces obtained by the construction of Kenyon and Ghys for G and a free group Fn on n generators
respectively.

Let M1,M2 ⊂ Mn be graph matchbox manifolds, then the rule

M1 � M2 if and only if M1 ⊆ M2

defines a partial order on the set Sn of graph matchbox manifolds in Mn . Compact leaves and minimal subsets of Mn are
minimal elements in Sn with respect to this order. The following theorem describes the structure of Mn .

Recall [6] that a leaf L ⊂ M is recurrent if and only if L is transitive and accumulates on itself. A leaf L is proper if it
does not accumulate on itself.

Theorem 1.4. The partially ordered set (Sn,�) of graph matchbox manifolds in the foliated space Mn, n > 1, has the following
properties.

(1) the set C = {L ⊂ Mn | L is compact} is a dense meager subset of Mn. Moreover, C ∩ X is countable, where X is a canonical
embedding of X into Mn.

(2) (Sn,�) is a directed partially ordered set, i.e. given M1,M2 ∈ Sn there exists M3 ∈ Sn such that M1 ∪M2 ⊆M3 .
(3) (Sn,�) contains a unique maximal element Mmax = Mn which has a recurrent leaf. Therefore, Mn contains a residual subset of

recurrent leaves.

In order to prove Theorem 1.4(2), we introduce the ‘fusion’ construction which associates to any two transitive subsets
M1 and M2 of Mn a transitive subset M3 such that M3 ⊇ M1 ∪ M2. More precisely, given pointed graphs (T1, e) and
(T2, e) such that M1 = LT1 and M2 = LT2 we give a recipe to construct a graph (T3, e) such that M3 = LT3 satisfies the
required property. The underlying idea of the construction is very simple, but it gives us a powerful tool which allows us to
obtain a lot of information about hierarchy and properties of graph matchbox manifolds. Theorems 1.4(2) and 1.4(3) are the
first applications of fusion.

Theorem 1.4(2) is a direct consequence of the fusion. The next important observation is that in the space Mn fusion
enables us to construct infinite increasing chains of graph matchbox manifolds. Using [6, Theorem 3.5] with slightly eased
assumptions, we conclude that the closure of such a chain contains a dense leaf, and if every element in the chain is distinct,
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