

Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The semigroup of ultrafilters near an idempotent of a semitopological semigroup

M. Akbari Tootkaboni*, T. Vahed

Department of Mathematics, Faculty of Basic Science, Shahed University of Tehran, Tehran, Iran

ARTICLE INFO

Article history: Received 19 March 2012 Received in revised form 4 August 2012 Accepted 9 August 2012

MSC: 54D80 22A15

Keywords: Stone–Čech compactification Ultrafilter Central set Syndetic set Piecewise syndetic set Minimal ideal

ABSTRACT

Let (T, +) be a Hausdorff semitopological semigroup, *S* be a dense subsemigroup of *T* and *e* be an idempotent element of *T*. The set e_S^* of ultrafilters on *S* that converge to *e* is a semigroup under restriction of the usual operation + on βT_d , the Stone–Čech compactification of the discrete semigroup T_d . We characterize the smallest ideal of $(e_S^*, +)$, and those sets "central" in $(e_S^*, +)$, that is, those sets which are members of minimal idempotents in $(e_S^*, +)$. We describe some combinatorial applications of those sets that are central in $(e_S^*, +)$.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Given a discrete space (T, +), we take the points of βT , the Stone–Čech compactification of T, to be the ultrafilters on T (or the ultrafilters in the collection of all subsets of T), with the points of T identified with the principal ultrafilters. The topology of βT can be defined by stating that the sets of the form $\{p \in \beta T: A \in p\}$, where A is a subset of T, are a base for the open sets. For any $p \in \beta T$ and any $A \subseteq T$, $A \in p$ if and only if $p \in \overline{A}$, where \overline{A} denotes $cl_{\beta T}A$. If A is a subset of T, we shall use A^* to denote $\overline{A} - A$.

Let $p, q \in \beta T$ and $A \subseteq T$, then $A \in p + q$ if and only if $\{s \in T: -s + A \in q\} \in p$, where $-s + A = \{t \in T: s + t \in A\}$. For every $p \in \beta T$, the map $r_p : \beta T \to \beta T$ defined by $r_p(q) = q + p$ is continuous, for every $s \in T$, the map $\lambda_s : \beta T \to \beta T$ defined by $\lambda_s(q) = s + q$ is continuous. For more details see [11] and [2].

The ultrafilter semigroup $(0^+, +)$ of the topological semigroup $T = ((0, +\infty), +)$ consists of all nonprincipal ultrafilter on $T = (0, +\infty)$ converging to 0 and is a closed subsemigroup in the Stone–Čech compactification βT_d of T as a discrete semigroup. In [8], N. Hindman and I. Leader characterized the smallest ideal of $(0^+, +)$, its closure, and those sets "central" in $(0^+, +)$, that is, those sets which are members of minimal idempotents in $(0^+, +)$. They derived new combinatorial applications of those sets that are central in $(0^+, +)$. Related topics in [3] and [4] can be found.

* Corresponding author. *E-mail address:* tootkaboni.akbari@gmail.com (M. Akbari Tootkaboni).

^{0166-8641/\$ –} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.topol.2012.08.009

$$e^* = \left\{ p \in \beta T_d \colon e \in \bigcap_{A \in p} cl_T(A) \right\}$$

is a compact subsemigroup of βT_d . (Given a topological space *X*, the notation X_d represents the set *X* with the discrete topology.)

In Section 3 we characterize the members of the smallest ideal of $(e^*, +)$ and its closure. We also describe those subsets of *T* that have idempotents in $(e^*, +)$ in their closure.

Especially important in the combinatorial applications have been the central sets, i.e. those sets with idempotents in the intersection of their closure with the smallest ideal. In Section 4 we describe sets that are central near *e*, and we derive combinatorial results from their existence.

2. Preliminary

In this paper, (T, +) denotes a Hausdorff semitopological semigroup that is not necessarily commutative. E(T) denotes the collection of all idempotents in T. For every $x \in T$, τ_x denotes the collection of all neighborhoods of x, where a set U is called a neighborhood of $x \in T$ if $x \in int_T(U)$. For a set A, we write $\mathcal{P}_f(A)$ for the set of finite nonempty subsets of A and $\mathcal{P}(A)$ denote the collection of all subsets of A.

Definition 2.1. Let (T, +) be a semitopological semigroup and S be a subsemigroup of T.

(a) Given $x \in T$, $x_S^* = \{p \in \beta S_d : x \in \bigcap_{A \in p} cl_T A\}$. (b) $B(S) = \bigcup_{x \in T} x_S^*$. (c) $\infty^* = \beta S_d \setminus B(S)$.

The set B(S) is the set of "bounded" ultrafilters on S and the set ∞^* is the set of "unbounded" ultrafilters on S. We say $p \in x^*$ is a near point to x. If x be a limit point of T, then $x^* \cap T^* \neq \emptyset$.

Lemma 2.2. Let (T, +) be a Hausdorff semitopological semigroup and S be a semigroup of T.

(a) Let $x \in T$. Then $x_s^* \neq \emptyset$ if and only if $x \in cl_T(S)$.

(b) $p \in \infty^*$ if and only if for each $x \in T$ there exists $A \in p$ such that $x \notin cl_T(A)$.

(c) If $\tau_x \subset p$ then $p \in x_s^*$.

(d) U is a neighborhood of x if and only if $U \in p$ for each $p \in x_s^*$.

(e) Let $A \subseteq T$. Then $x \in cl_T A$ if and only if $cl_{\beta T_d} A \cap x_S^* \neq \emptyset$.

Proof. (a) It is obvious.

(b) Let $p \in \infty^*$, so $p \notin x^*$ for each $x \in T$. Hence $x \notin \bigcap_{A \in p} cl_T A$. Thus $x \notin cl_T A$ for some $A \in p$.

Conversely, suppose for each $x \in T$, there exists $A \in p$ such that $x \notin cl_T A$. Hence $p \notin B(T)$ and thus $p \in \infty^*$.

(c) Let $U \in p$ for each $U \in \tau_x$, thus $U \cap A \neq \emptyset$ for each $U \in \tau_x$ and for each $A \in p$. This implies $x \in cl_T A$ for each $A \in p$. Therefore $p \in x^*$.

(d) Let $U \in \tau_x$ and $p \in x^*$. $U \cap A \neq \emptyset$ for each $A \in p$, so $U \in p$. Conversely, let $x \in \partial U = U - int_T(U)$, so $\{U^c \cup \partial U\} \cup \tau_x \subseteq p$, thus $p \in x^*$ and $U \notin p$, a contradiction.

(e) It is obvious.

Lemma 2.3. Let (T, +) be a semitopological semigroup and S be a dense subsemigroup of T, then:

(i) For each $x, y \in T, x_{S}^{*} + y_{S}^{*} \subseteq (x + y)_{S}^{*}$.

(ii) Let $e \in T$ be an idempotent, then e_S^* is a compact subsemigroup of βS_d .

Proof. (i) Pick $p \in x_5^*$ and pick $q \in y_5^*$. Suppose that $A \in p + q$, then $\{t \in S: -t + A \in q\} \in p$. Since $-t + A \in q$ so $y \in cl_T(-t+A)$. Therefore there exists a net $\{x_\alpha\} \subseteq -t+A$ such that $x_\alpha \to y$ and so $t+x_\alpha \to t+y$ for each $t \in \{s \in S: -s+A \in q\}$. Also since $x \in cl_T(\{t \in S: -t + A \in q\})$, so there exists a net $\{t_\beta\}$ such that $t_\beta \to x$. Thus $\lim_\beta \lim_\alpha t_\beta + x_\alpha = x + y$. Since for each α and β , $t_\beta + x_\alpha \in A$ so $x + y \in cl_T(A)$. This completes the proof.

(ii) It is obvious. \Box

3. Idempotents and the smallest ideal of e^*

Let *S* be a dense subsemigroup of a semitopological semigroup (T, +), and $e \in E(T)$. Among the consequences of the fact that $(e_S^*, +)$ is a compact right topological semigroup is the fact that it contains idempotents [5, Corollary 2.10]. If *S*

Download English Version:

https://daneshyari.com/en/article/6424762

Download Persian Version:

https://daneshyari.com/article/6424762

Daneshyari.com