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attention. On page 336, Ramanujan proposes two identities
Communicated by George E. pag ’ Jan prop w ’

but the formulas are wrong — each is vitiated by divergent

Andrews . X

series. We concentrate on only one of the two incorrect
In Memory of W. Keith Moore, “identities,” which may have been devised to attack the
Professor of Mathematics at Albion extended divisor problem. We prove here a corrected version
College of Ramanujan’s claim, which contains the convergent series
Dedicated to Pratibha Kulkarni who appearing in it. The convergent series in Ramanujan’s faulty
first showed me the beauty of claim is similar to one used by G.F. Voronoi, G.H. Hardy,
Mathematics and others in their study of the classical Dirichlet divisor

problem. This now brings us to page 335, which comprises two
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In Memory of Mohanlal Sinha Roy, formulas featuring doubly infinite series of Bessel functions,
Professor at Ramakrishna Mission the first being conjoined with the classical circle problem
Vidyamandira initiated by Gauss, and the second being associated with the
In Memory of Professor Nicolae Dirichlet divisor problem. The first and fourth authors, along
Popescu with Sun Kim, have written several papers providing proofs
of these two difficult formulas in different interpretations. In
MSC: this monograph, we return to these two formulas and examine
primary 11MO06, 33C10 them in more general settings.
secondary 33E30, 11N37 The aforementioned convergent series in Ramanujan’s

“identity” is also similar to one that appears in a curious
identity found in Chapter 15 in Ramanujan’s second notebook,
written in a more elegant, equivalent formulation on page
332 in the lost notebook. This formula may be regarded
as a formula for {(%), and in 1925, S. Wigert obtained a
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Koshliakov transforms generalization giving a formula for C(%) for any even integer
Bessel functions k > 2. We extend the work of Ramanujan and Wigert in this
Self-reciprocal functions paper.

Wigert’s identity

L " The Voronoi summation formula appears prominently in our
Double Bessel series identities

study. In particular, we generalize work of J.R. Wilton and
derive an analogue involving the sum of divisors function
os(n).
The modified Bessel functions K, (z) arise in several contexts,
as do Lommel functions. We establish here new series and
integral identities involving modified Bessel functions and
modified Lommel functions. Among other results, we establish
a modular transformation for an infinite series involving os(n)
and modified Lommel functions. We also discuss certain
obscure related work of N.S. Koshliakov. We define and
discuss two new related classes of integral transforms, which
we call Koshliakov transforms, because he first found elegant
special cases of each.
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