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This paper deals with left non-degenerate set-theoretic solu-
tions to the Yang–Baxter equation (= LND solutions), a vast 
class of algebraic structures encompassing groups, racks, and 
cycle sets. To each such solution there is associated a shelf 
(i.e., a self-distributive structure) which captures its major 
properties. We consider two (co)homology theories for LND 
solutions, one of which was previously known, in a reduced 
form, for biracks only. An explicit isomorphism between these 
theories is described. For groups and racks we recover their 
classical (co)homology, whereas for cycle sets we get new con-
structions. For a certain type of LND solutions, including 
quandles and non-degenerate cycle sets, the (co)homologies 
split into the degenerate and the normalized parts. We ex-
press 2-cocycles of our theories in terms of group cohomology, 
and, in the case of cycle sets, establish connexions with exten-
sions. This leads to a construction of cycle sets with interesting 
properties.
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1. Introduction

The Yang–Baxter equation (= YBE) plays a fundamental role in such apparently 
distant fields as statistical mechanics, particle physics, quantum field theory, quantum 
group theory, and low-dimensional topology; see for instance [32] for a brief introduction. 
The study of its solutions has been a vivid research area for the last half of a century. 
Following Drinfel’d [11], set-theoretic solutions, or braided sets, received special attention. 
Concretely, these are sets X endowed with a braiding, i.e., a not necessarily invertible 
map σ : X×2 → X×2, often written as σ(a, b) = (ab, ab), satisfying the YBE

(σ × Id)(Id×σ)(σ × Id) = (Id×σ)(σ × Id)(Id×σ) : X×3 → X×3. (1.1)

Two families of braided sets are particularly well explored:

• The map

σ(a, b) = (b, ab)

is a braiding if and only if the operation a � b := ab is self-distributive, in the sense 
of

(a � b) � c = (a � c) � (b � c). (1.2)

Such datum (X, �) is called a shelf. The term rack is used if moreover the right 
translations a �→ a � b are bijections on X for all b ∈ X, which is equivalent to 
the invertibility of σ. A quandle is a rack satisfying a � a = a for all a, which 
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