

Contents lists available at ScienceDirect

Advances in Mathematics

Derived equivalences for hereditary Artin algebras

Donald Stanley^a, Adam-Christiaan van Roosmalen^{b,*}

Dept. of Math. & Stats., University of Regina, Regina, S4S 4A5, Canada
Universiteit Hasselt, Campus Diepenbeek, Departement WNI, 3590 Diepenbeek, Belqium

ARTICLE INFO

Article history: Received 4 November 2015 Received in revised form 8 August 2016

Accepted 12 August 2016 Available online 27 August 2016 Communicated by Henning Krause

MSC: 16E35 16E60 16G10 18E30

 $Keywords:\\t-Structure\\Derived equivalence\\Hereditary algebra\\Serre duality$

ABSTRACT

We study the role of the Serre functor in the theory of derived equivalences. Let \mathcal{A} be an abelian category and let $(\mathcal{U}, \mathcal{V})$ be a t-structure on the bounded derived category $D^b \mathcal{A}$ with heart \mathcal{H} . We investigate when the natural embedding $\mathcal{H} \to D^b \mathcal{A}$ can be extended to a triangle equivalence $D^b \mathcal{H} \to D^b \mathcal{A}$. Our focus of study is the case where \mathcal{A} is the category of finite-dimensional modules over a finite-dimensional hereditary algebra. In this case, we prove that such an extension exists if and only if the t-structure is bounded and the aisle \mathcal{U} of the t-structure is closed under the Serre functor.

© 2016 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	416
	Sketch of proof of Theorem 1.2	418
2	Preliminaries and notation	419

^{*} Corresponding author.

 $[\]label{lem:email$

	2.1.	Hereditary categories	420	
	2.2.	Serre duality	420	
	2.3.	Wide and thick subcategories	421	
	2.4.	Perpendicular subcategories and twist functors	422	
	2.5.	Ext-projectives and silting subcategories	424	
3.	Torsio	n pairs, weight structures, and t-structures	425	
	3.1.	Torsion pairs	425	
	3.2.	Weight structures	426	
	3.3.	<i>t</i> -Structures	426	
	3.4.	Torsion theories	428	
	3.5.	t-Structures for hereditary algebras	429	
4.	t-Stru	ctures and derived equivalences	432	
	4.1.	t-Structures inducing derived equivalences	432	
	4.2.	Compatibility with the Serre functor	437	
5.	Finite	ly generated aisles	438	
	5.1.	Finitely generated aisles closed under the Serre functor	438	
	5.2.	Application: derived equivalences for derived discrete algebras	440	
6.	Projec	tive objects in the heart	441	
7.	A criterion for derived equivalence			
8.	Aisles with no nonzero Ext-projectives			
9.	Reduction by a simple top			
10.	Proof of the main theorem			
References				

1. Introduction

Let \mathcal{A} be an abelian category. In the bounded derived category $D^b \mathcal{A}$, we consider the full subcategory $D^{\leq 0}_{\mathcal{A}}$ of all objects X such that $H^n X = 0$ for all n > 0, and the full subcategory $D^{\geq 0}_{\mathcal{A}}$ of all objects X such that $H^n X = 0$ for all n < 0. We can recover \mathcal{A} (up to equivalence) as $D^{\leq 0}_{\mathcal{A}} \cap D^{\geq 0}_{\mathcal{A}}$.

A pair $(\mathcal{U}, \mathcal{V})$ of full subcategories of $D^b \mathcal{A}$ with properties similar to the pair $(D_{\mathcal{A}}^{\leq 0}, D_{\mathcal{A}}^{\geq 0})$ given above is called a *t*-structure (see [8] or §3.3). The definitions are chosen so that $\mathcal{U} \cap \mathcal{V}$ is an abelian category, called the *heart* of $(\mathcal{U}, \mathcal{V})$.

We will say that the abelian categories \mathcal{A} and \mathcal{B} are derived equivalent if there is a triangle equivalence $F: D^b \mathcal{A} \to D^b \mathcal{B}$. Using F, one can transfer the standard t-structure $(D_{\mathcal{B}}^{\leq 0}, D_{\mathcal{B}}^{\geq 0})$ on $D^b \mathcal{B}$ across to a t-structure $(\mathcal{U}, \mathcal{V})$ on $D^b \mathcal{A}$, whose heart $\mathcal{U} \cap \mathcal{V}$ is equivalent to \mathcal{B} .

However, this situation is not representative for the general situation. Indeed, even though it is possible, for any t-structure $(\mathcal{U}, \mathcal{V})$ on $D^b \mathcal{A}$, to extend the natural embedding $\mathcal{H} \to D^b \mathcal{A}$ of the heart to a triangle functor $F: D^b \mathcal{H} \to D^b \mathcal{A}$, there might be no choice of F which is an equivalence. If there is such a choice $F: D^b \mathcal{H} \to D^b \mathcal{A}$, we will say that the t-structure $(\mathcal{U}, \mathcal{V})$ induces a derived equivalence (see Definition 4.1). We will discuss this in §4.1 (based on necessary and sufficient conditions given in [8]).

One necessary condition for a t-structure $(\mathcal{U}, \mathcal{V})$ to induce a derived equivalence is that the t-structure must be bounded, meaning that $\bigcup_{n\in\mathbb{Z}}\mathcal{U}[n]=D^b\mathcal{A}=\bigcup_{n\in\mathbb{Z}}\mathcal{V}[n]$. Here, we write X[n] for the n-fold suspension of X.

Download English Version:

https://daneshyari.com/en/article/6424984

Download Persian Version:

https://daneshyari.com/article/6424984

Daneshyari.com