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We study autoequivalences of the derived category of coherent
sheaves of a variety arising from a variation of GIT quotient.
‘We show that these autoequivalences are spherical twists, and
describe how they result from mutations of semiorthogonal
decompositions. Beyond the GIT setting, we show that all
spherical twist autoequivalences of a dg-category can be ob-
tained from mutation in this manner.
Motivated by a prediction from mirror symmetry, we refine
the recent notion of “grade restriction rules” in equivariant
derived categories. We produce additional derived autoequiv-
alences of a GIT quotient and propose an interpretation in
terms of monodromy of the quantum connection. We gener-
alize this observation by proving a criterion under which a
spherical twist autoequivalence factors into a composition of
other spherical twists.
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1. Introduction

Homological mirror symmetry predicts, in certain cases, that the bounded derived
category of coherent sheaves on an algebraic variety should admit twist autoequivalences
corresponding to a spherical object [17]. The autoequivalences predicted by mirror sym-
metry have been widely studied, and the notion of a spherical object has been generalized
to the notion of a spherical functor [1] (see Definition 3.10). We apply recently devel-
oped techniques for studying the derived category of a geometric invariant theory (GIT)
quotient [5,10,12,13,16] to the construction of autoequivalences, and our investigation
leads to general connections between the theory of spherical functors and the theory of
semiorthogonal decompositions and mutations.

We consider an algebraic stack which arises as a GIT quotient of a smooth quasipro-
jective variety X by a reductive group G. By varying the G-ample line bundle used
to define the semistable locus, one gets a birational transformation X**/G --» X3*/G
called a variation of GIT quotient (VGIT). We study a simple type of VGIT, which we
call a balanced wall crossing (see Section 3).

Under a hypothesis on wyx, a balanced wall crossing gives rise to an equivalence
¥y : DY(X**/G) — D°(X3*/G) which depends on a choice of w € Z, and the composition
D, = w;}rlww defines an autoequivalence of D?(X**/G). Autoequivalences of this kind
have been studied recently under the name window-shifts [10,16]. We generalize the
observations of those papers in showing that ®,, is always a spherical twist.

Recall that if B is an object in a dg-category, then we can define the twist functor

Tg : F — Cone(Hom' (B, F) ®c B — F)

If B is a spherical object, then Tg is by definition the spherical twist autoequivalence
defined by B. More generally, if S : A — B is a spherical functor (Definition 3.10),
then one can define a twist autoequivalence Ts := Cone(S o S® — idg) of B, where
ST denotes the right adjoint. Throughout this paper we refer to a twist autoequivalence
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