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We introduce and study the homotopy theory of motivic
spaces and spectra parametrized by quotient stacks [X/G],
where G is a linearly reductive linear algebraic group. We
extend to this equivariant setting the main foundational
results of motivic homotopy theory: the (unstable) purity
and gluing theorems of Morel-Voevodsky and the (stable)
ambidexterity theorem of Ayoub. Our proof of the latter is
different than Ayoub’s and is of interest even when G is
trivial. Using these results, we construct a formalism of six
operations for equivariant motivic spectra, and we deduce
that any cohomology theory for G-schemes that is represented
by an absolute motivic spectrum satisfies descent for the cdh
topology.
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1. Introduction

The goal of this paper is to develop the formalism of six operations in stable equivari-
ant motivic homotopy theory. An equivariant version of motivic homotopy theory was
first considered by Voevodsky in [9] and played a small part in his proof of the Bloch—
Kato conjecture [49], more precisely in the construction of symmetric power functors on
the A'-homotopy category [48, §2.1]. A variety of definitions of equivariant motivic ho-
motopy theory were later proposed by several authors: by Hu, Kriz, and Ormsby [27], by
Herrmann [22,23], by Heller, Krishna, and @stvaer [20], and by Carlsson and Joshua [5].
In these approaches, equivariant motivic homotopy theory is a setting in which to study
invariants of smooth G-schemes with some specific properties, for G an algebraic group.
We will discuss in §1.3 below how these approaches relate to the one developed in this
paper. In any case, our starting point is somewhat different: we view equivariant homo-
topy theory as a natural extension of parametrized homotopy theory, and the formalism
of six operations serves as a guiding principle in our definitions.
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