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For the TZ metric on the moduli space .#p of n-pointed
rational curves, we construct a Kéhler potential in terms of
the Fourier coefficients of the Klein’s Hauptmodul. We define
the space &, ,, as holomorphic fibration &,,,, — &, over the
Schottky space &, of compact Riemann surfaces of genus g,
where the fibers are configuration spaces of n points. For the
tautological line bundles .Z; over &, ,, we define Hermitian
metrics h; in terms of Fourier coefficients of a covering map
J of the Schottky domain. We define the regularized classical
Liouville action S and show that exp{S/w} is a Hermitian
metric in the line bundle .Z = ®}_,.%; over &, ,. We explicitly
compute the Chern forms of these Hermitian line bundles

4 1
ci(Zishi) = 3wTZ,0) c1(Z,exp{S/m}) = —SWwWP-
We prove that a smooth real-valued function —% = —S +

my. i, logh; on &y, a potential for this special difference of
WP and TZ metrics, coincides with the renormalized hyper-
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bolic volume of a corresponding Schottky 3-manifold. We ex-
tend these results to the quasi-Fuchsian groups of type (g, n).
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Weil introduced the Weil-Petersson (WP) metric on the moduli spaces of Riemann
surfaces by using the Petersson inner product on the holomorphic cotangent spaces, the
complex vector spaces of cusp forms of weight 4. Ahlfors proved that the WP metric
is Kéhler and its Ricci, holomorphic sectional and scalar curvatures are all negative [1,
2], and Wolpert found a closed formula for the Riemann tensor of the WP metric and
obtained explicit bounds for its curvatures [17].

In [19,20] it was shown that for the moduli space .4 , of marked Riemann surfaces
of type (0,n), n > 3 (n-pointed rational curves) and for the Schottky space &, of
compact Riemann surfaces of genus g > 1 the WP metric has global Kéhler potential,
the so-called classical Liouville action (for precise definitions, see Sects. 2 and 3). In
[12,13] a new Kéhler metric was introduced on the moduli space M, , of Riemann
surfaces of genus g with n > 0 punctures, 3¢ —3+n > 0. In [8,10,11,16,18] it was called
Takhtajan—Zograf (TZ) metric (for its precise definition, see Sect. 2.1.2). Unlike the WP
metric, the curvature properties of the TZ metric are not known.

Here we present explicit formula for a Kéhler potential h; of the i-th TZ metric on
the moduli space 4, i = 1,...,n. Specifically, in Proposition 1 we prove that h; is
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