Advances in Mathematics 305 (2017) 1320-1355

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Explicit Serre duality on complex spaces

MATHEMATICS

霐

Jean Ruppenthal $^{\rm a,*,1},$ Håkan Samuelsson Kalm $^{\rm b,2},$ Elizabeth Wulcan $^{\rm b,2}$

^a Department of Mathematics, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany

^b Department of Mathematical Sciences, Division of Mathematics, University of Gothenburg and Chalmers University of Technology, SE-412 96 Göteborg, Sweden

ARTICLE INFO

Article history: Received 12 October 2014 Received in revised form 2 October 2016 Accepted 5 October 2016 Available online 20 October 2016 Communicated by Ravi Vakil

MSC: 32A26 32A27 32B15 32C30

Keywords:

Serre duality dbar-cohomology Integral formulas Canonical sheaves Analytic spaces

ABSTRACT

In this paper we use recently developed calculus of residue currents together with integral formulas to give a new explicit analytic realization, as well as a new analytic proof, of Serre duality on any reduced pure *n*-dimensional paracompact complex space X. At the core of the paper is the introduction of certain fine sheaves $\mathscr{B}_X^{n,q}$ of currents on X of bidegree (n,q), such that the Dolbeault complex $(\mathscr{B}_X^{n,\bullet}, \bar{\partial})$ becomes, in a certain sense, a dualizing complex. In particular, if X is Cohen-Macaulay then $(\mathscr{B}_X^{n,\bullet}, \bar{\partial})$ is an explicit fine resolution of the Grothendieck dualizing sheaf.

© 2016 Elsevier Inc. All rights reserved.

 $\label{eq:http://dx.doi.org/10.1016/j.aim.2016.10.013} 0001-8708 \ensuremath{\oslash} \ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\otimes}$

^{*} Corresponding author.

E-mail addresses: ruppenthal@uni-wuppertal.de (J. Ruppenthal), hasam@chalmers.se

⁽H. Samuelsson Kalm), wulcan@chalmers.se (E. Wulcan).

 $^{^1}$ The first author was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), grant RU 1474/2 within DFG's Emmy Noether Programme.

 $^{^2}$ The second and the third author were partially supported by the Swedish Research Council.

1. Introduction

Let X be a complex n-dimensional manifold and let $F \to X$ be a complex vector bundle. Let $\mathcal{E}^{0,q}(X,F)$ denote the space of smooth F-valued (0,q)-forms on X and let $\mathcal{E}^{n,q}_c(X,F^*)$ denote the space of smooth compactly supported (n,q)-forms on X with values in the dual vector bundle F^* . Serre duality, [29], can be formulated analytically as follows: There is a non-degenerate pairing

$$H^{q}\left(\mathcal{E}^{0,\bullet}(X,F),\bar{\partial}\right) \times H^{n-q}\left(\mathcal{E}^{n,\bullet}_{c}(X,F^{*}),\bar{\partial}\right) \to \mathbb{C},$$

$$([\varphi]_{\bar{\partial}},[\psi]_{\bar{\partial}}) \mapsto \int_{X} \varphi \wedge \psi,$$

$$(1.1)$$

provided that $H^q(\mathcal{E}^{0,\bullet}(X,F),\bar{\partial})$ and $H^{q+1}(\mathcal{E}^{0,\bullet}(X,F),\bar{\partial})$ are Hausdorff considered as topological vector spaces. If we set $\mathscr{F} := \mathscr{O}(F)$ and $\mathscr{F}^* := \mathscr{O}(F^*)$ and let Ω^n_X denote the sheaf of holomorphic *n*-forms on X, then one can, via the Dolbeault isomorphism, rephrase Serre duality more algebraically: There is a non-degenerate pairing

$$H^{q}(X,\mathscr{F}) \times H^{n-q}_{c}(X,\mathscr{F}^{*} \otimes \Omega^{n}_{X}) \to \mathbb{C},$$
 (1.2)

realized by the cup product, provided that $H^q(X,\mathscr{F})$ and $H^{q+1}(X,\mathscr{F})$ are Hausdorff. In this formulation Serre duality has been generalized to complex spaces, see, e.g., Hartshorne [20,19], and Conrad [16] for the algebraic setting and Ramis–Ruget [27] and Andreotti–Kas [11] for the analytic. In fact, if X is a pure *n*-dimensional paracompact complex space that in addition is Cohen–Macaulay, then again there is a perfect pairing (1.2) if we construe Ω_X^n as the *Grothendieck dualizing sheaf* that we will get back to shortly. If X is not Cohen–Macaulay things get more involved and $H_c^{n-q}(X,\mathscr{F}^*\otimes\Omega_X^n)$ is replaced by $\operatorname{Ext}_c^{-q}(X;\mathscr{F}, \mathbf{K}^{\bullet})$, where \mathbf{K}^{\bullet} is the *dualizing complex* in the sense of Ramis–Ruget [27]; that is a certain complex of \mathscr{O}_X -modules with coherent cohomology.

To our knowledge there is no such explicit analytic realization of Serre duality as (1.1) in the case of singular spaces. In fact, *verbatim* the pairing (1.1) cannot realize Serre duality in general since the Dolbeault complex $(\mathcal{E}_X^{0,\bullet}, \bar{\partial})^3$ in general does not provide a resolution of \mathscr{O}_X . In this paper we replace the sheaves of smooth forms by certain fine sheaves of currents $\mathscr{A}_X^{0,q}$ and $\mathscr{B}_X^{n,n-q}$ that are smooth on X_{reg} and such that (1.1) with $\mathcal{E}^{0,\bullet}$ and $\mathcal{E}^{n,\bullet}$ replaced by $\mathscr{A}^{0,\bullet}$ and $\mathscr{B}^{n,\bullet}$, respectively, indeed realizes Serre duality.

We will say that a complex $(\mathscr{D}^{\bullet}_X, \delta)$ of fine sheaves is a *dualizing Dolbeault complex* for a coherent sheaf \mathscr{F} if $(\mathscr{D}^{\bullet}_X, \delta)$ has coherent cohomology and if there is a non-degenerate pairing $H^q(X, \mathscr{F}) \times H^{n-q}(\mathscr{D}^{\bullet}_c(X), \delta) \to \mathbb{C}$. The relation to the Ramis–Ruget dualizing complex is not completely clear to us, but we still find this terminology convenient. For instance, $(\mathscr{B}^{n,\bullet}_X, \bar{\partial})$ is a dualizing Dolbeault complex for \mathscr{O}_X .

³ See below for the definition of $\mathcal{E}_X^{p,q}$; the sheaf of smooth (p,q)-forms on X.

Download English Version:

https://daneshyari.com/en/article/6425103

Download Persian Version:

https://daneshyari.com/article/6425103

Daneshyari.com