

Contents lists available at ScienceDirect

Advances in Mathematics

Multiplier ideal sheaves associated with weights of log canonical threshold one

Qi'an Guan^{a,1}, Zhenqian Li^{b,*}

 ^a School of Mathematical Sciences, and Beijing International Center for Mathematical Research, Peking University, Beijing, 100871, China
 ^b School of Mathematical Sciences, Peking University, Beijing, 100871, China

ARTICLE INFO

Article history: Received 12 April 2016 Received in revised form 9 June 2016 Accepted 15 July 2016 Available online 21 July 2016 Communicated by Karen Smith

MSC: 32C35 32U05 32U25

Keywords:
Plurisubharmonic function
Multiplier ideal sheaf
Lelong number
Log canonical threshold

ABSTRACT

In this article, we will characterize the multiplier ideal sheaves associated with weights of log canonical threshold one by restricting the weights to complex regular surface.

© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: guanqian@amss.ac.cn (Q. Guan), lizhenqian@amss.ac.cn (Z. Li).

^{*} Corresponding author.

 $^{^{\}rm 1}$ Partially supported by NSFC-11522101 and NSFC-11431013.

1. Introduction

1.1. Background

Let $\Omega \subset \mathbb{C}^n$ be a domain and $o \in \Omega$ the origin. Let u be a plurisubharmonic function on Ω . The multiplier ideal sheaf $\mathscr{I}(u)$ is defined to be the sheaf of germs of holomorphic functions f such that $|f|^2e^{-2u}$ is locally integrable (see [1]). Here, u is regarded as the weight of $\mathscr{I}(u)$. The Lelong number of u at o is defined to be

$$\nu(u, o) := \sup\{\gamma \ge 0 | u(z) \le \gamma \log |z| + O(1) \text{ near } o\}.$$

When the Lelong number satisfies $\nu(u,o) < 1$, Skoda showed that $\mathscr{I}(u)_o = \mathcal{O}_n$ (see [1]). When $\nu(u,o) = 1$, Favre and Jonsson [4] used the valuative tree to characterize the structure of $\mathscr{I}(u)_o$ in dimension two. In [6], Guan and Zhou obtained the following result for arbitrary dimension n, by means of their solution to Demailly's strong openness conjecture [5].

Theorem 1.1. ([6]) Let u be a plurisubharmonic function on $\Omega \subset \mathbb{C}^n$ with $c_o(u) = 1$. If $\nu(u, o) = 1$, then $\mathscr{I}(u)_o = \mathscr{I}(\log |h|)_o$, where h is the minimal defining function of a germ of regular complex hypersurface through o.

The $log\ canonical\ threshold\ (or\ complex\ singularity\ exponent)$ of u at o is defined to be

$$c_o(u) := \sup\{c \ge 0 | \exp(-2cu) \text{ is integrable near } o\}.$$

It is convenient to put $c_o(-\infty) = 0$ (see [3]).

Note that $c_o(u) \cdot \nu(u, o) = 1$ when n = 1. In other words, Theorem 1.1 is equivalent to the fact that if there exists a complex line L through o such that $c_{o'}(u|_L) = 1$, then $\mathscr{I}(u)_o = (z_1) \cdot \mathcal{O}_n$ or \mathcal{O}_n , in some local coordinates near o.

Thus, it is natural to raise the following question.

Question 1.1. Let u be a plurisubharmonic function on $\Omega \subset \mathbb{C}^n$ and H an m-dimensional complex plane in \mathbb{C}^n through o. If $c_{o'}(u|_H) = 1$, what is the structure of $\mathscr{I}(u)_o$?

For the case m = 1, Question 1.1 is solved by Theorem 1.1. In the following subsection, we will answer the Question for the case m = 2.

1.2. Answer to Question 1.1 for m=2

Firstly, we present the following characterization of multiplier ideals associated with weights of log canonical threshold one in the two-dimensional case.

Download English Version:

https://daneshyari.com/en/article/6425112

Download Persian Version:

https://daneshyari.com/article/6425112

Daneshyari.com