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We prove that if a measure distal action α of a countable 
group Γ is weakly contained in a strongly ergodic probability 
measure preserving action β of Γ, then α is a factor of β. In 
particular, this applies when α is a compact action.
As a consequence, we show that the weak equivalence class of 
any strongly ergodic action completely remembers the weak 
isomorphism class of the maximal distal factor arising in the 
Furstenberg–Zimmer Structure Theorem.
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1. Introduction

The notion of weak containment for group actions was introduced by A. Kechris 
[16] as an analogue of the notion of weak containment for unitary representations. Let 
Γ �α (X, μ) and Γ �β (Y, ν) be two probability measure preserving (p.m.p.) actions of 
a countable group Γ. Then α is said to be weakly contained in β (in symbols, α ≺ β) 
if for any finite set S ⊂ Γ, finite measurable partition {Ai}ni=1 of X, and ε > 0, we can 
find a measurable partition {Bi}ni=1 of Y such that for all γ ∈ S and i, j ∈ {1, ..., n} we 
have

|μ(γAi ∩Aj) − ν(γBi ∩Bj)| < ε.

If α ≺ β and β ≺ α, we say that α is weakly equivalent to β.
We say that α is a factor of β, or that β is an extension of α, if there exists a 

measurable, measure preserving map θ : Y → X such that θ(γy) = γθ(y), for all γ ∈
Γ and almost every y ∈ Y . The map θ is called a factor map or an extension. If in 
addition there is a conull set Y0 ⊆ Y such that θ is one-to-one on Y0, then θ is called an 
isomorphism and we say that α is isomorphic to β. The actions α and β are said to be 
weakly isomorphic if each is a factor of the other.

As the terminology suggests, if α is a factor of β, then α is weakly contained in β. The 
main goal of this note is to establish a rigidity result which provides a general instance 
when the converse holds.

Theorem 1.1. Let Γ be a countable group, Γ �α (X, μ) be a measure distal p.m.p. action, 
and Γ �β (Y, ν) be a strongly ergodic p.m.p. action.

If α is weakly contained in β, then α is a factor of β. In particular, if a compact 
action α is weakly contained in a strongly ergodic action β, then α is a factor of β.

Before recalling the notions involved in Theorem 1.1, let us put it into context and 
outline its proof.

Weak containment and weak equivalence have received much attention since their 
introduction. In [16], A. Kechris shows that cost varies monotonically with weak con-
tainment and in [17] Kechris uses this monotonicity to obtain a new proof that free 
groups have fixed price. Several other measurable combinatorial parameters of actions 
are known to respect weak containment and hence are invariants of weak equivalence; 
see [1,10,11].

In [3], M. Abért and B. Weiss exhibit a remarkable anti-rigidity phenomenon for weak 
containment by showing that every free p.m.p. action of Γ weakly contains the Bernoulli 
action over an atomless base space. The Abért–Weiss Theorem was extended in [21] and 
used to show that every weak equivalence class contains “unclassifiably many” isomor-
phism classes of actions, thus ruling out the possibility of weak equivalence superrigidity. 
These anti-rigidity results stand in marked contrast to the rigidity exhibited in Theo-
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