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1. Introduction

The usefulness of Khovanov homology [22] stems not only from its power as a topolog-
ical invariant, but also from its relatively simple description. Indeed, one can understand
Khovanov homology as assigning to a link in S® a (co)chain complex in which the “chain
groups” are collections of disjoint circles in the plane and whose morphisms are given
by saddle cobordisms. A simple operation assigning vector spaces to circles and linear
maps to cobordisms (a TQFT) then gives a complex of vector spaces and the homology
of this complex is the link invariant. Despite the simplicity of this description, the link
invariant is quite powerful; for example, Rasmussen uses Khovanov homology to give an
elegant proof of the Milnor conjecture [49], Kronheimer and Mrowka show that it de-
tects the unknot [32], and Grigsby and Ni show that (a variant of) Khovanov homology
distinguishes braids from other tangles [17].

Following his construction of sly link homology, Khovanov introduced a homology
theory in the spirit of the invariant mentioned above categorifying the sls link polyno-
mial [24]. This invariant assigns to a link a complex of trivalent graphs, called webs, with
morphisms given by foams, singular cobordisms between such graphs. Again, one can
pass from this complex to one consisting of vector spaces and linear maps and compute
homology to obtain the link invariant. In subsequent years, various authors introduced
link homology theories categorifying the sl,, link polynomial for n > 4. Khovanov and
Rozansky gave the initial construction based on the theory of matrix factorizations [31].
In later work, Cautis and Kamnitzer [5,6] construct sl, link homology using derived
categories of coherent sheaves on orbits in the affine Grassmannian, Mazorchuk and
Stroppel [46] and Sussan [52] give constructions based on category O, and Webster [54]
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