On the birationality of complete intersections associated to nef-partitions

Zhan Li *
Rutgers University, Department of Mathematics, 110 Frelinghuysen Rd., Piscataway, NJ, 08854, USA

A R T I C L E I N F O

Article history

Received 3 January 2015
Received in revised form 1 April 2016
Accepted 5 May 2016
Available online 18 May 2016
Communicated by Tony Pantev

Keywords:

Mirror symmetry
Multiple mirrors
Birationality
Batyrev-Borisov mirrors

A B S T R A C T

We prove that generic complete intersections associated to multiple mirror nef-partitions are all birational. This result solves a conjecture by Batyrev and Nill in [6] under some mild assumptions.
© 2016 Elsevier Inc. All rights reserved.

Contents

1. Introduction 72
2. Background 73
2.1. Definitions of Gorenstein cones and nef-partitions 73
2.2. Nef-partitions versus reflexive Gorenstein cones 76
3. The main question 79
3.1. The main question and its motivation 79
3.2. Example 83
4. The main theorem 85

[^0]4.1. The $s=2$ case: a baby version of the main theorem 85
4.2. Results on the decomposition of lattices 88
4.3. Construction of the determinantal variety 92
4.4. Proof of the main theorem 95
5. An application to the Calabrese-Thomas's example 98
6. Appendix: Δ-regularity, singularities and Calabi-Yau varieties 101
Acknowledgments 106
References 106

1. Introduction

Mirror symmetry was first discovered in string theory as a duality between families of 3-dimensional Calabi-Yau manifolds. Since its discovery more than twenty years ago, it has drawn much attention from physicists and mathematicians. Among the methods of constructions of mirror pairs, Batyrev and Borisov used the complete intersections in toric varieties [2,8]; Berglund, Hübsch and Krawitz used the finite quotients of hypersurfaces in weighted projective space $[7,25]$; Gross and Siebert used the toric degeneration of Calabi-Yau varieties to connect the Strominger-Yau-Zaslow approach and the BatyrevBorisov approach [17,18].

The Batyrev-Borisov construction is one of the best understood settings in mirror symmetry. Batyrev [2] used Δ-regular hypersurfaces in toric varieties associated to reflexive polytopes as a way to construct a large set of mirror pairs. In this case, the mirror pair consists of the family of Δ-regular hypersurfaces associated to a reflexive polytope and the family of Δ-regular hypersurfaces associated to its dual polytope. Borisov [8] generalized Batyrev's construction by considering nef-partitions of reflexive polytopes. A nef-partition of a reflexive polytope corresponds to a decomposition of the boundary divisor into nef Cartier divisors. In this case, the mirror pairs are constructed as the family of complete intersections associated to a nef-partition and the family of complete intersections associated to its dual nef-partition. These complete intersections are Calabi-Yau varieties, and their string-theoretic Hodge numbers behave as predicted by mirror symmetry [4].

Compared to hypersurfaces, complete intersections associated to nef-partitions are more complicated. In particular, they may exhibit nontrivial multiple mirror phenomenon, i.e. two Calabi-Yau varieties X, \tilde{X} may have the same mirror Y [14] depending on a choice of nef-partition. If this is the case, the homological mirror symmetry conjecture [24] implies that the derived categories of coherent sheaves on X, \tilde{X} are equivalent. Indeed, according to the conjecture, the derived categories of X, \tilde{X} are expected to be equivalent to the Fukaya categories of their mirrors, which in this case are the same because X, \tilde{X} are multiple mirrors.

Besides derived equivalence, Batyrev and Nill asked whether toric multiple mirrors (of any dimension) in the setting of the Batyrev-Borisov construction are birational ([6] Question 5.2). We give an affirmative answer to this question in Theorem 4.10 under some mild assumptions:

https://daneshyari.com/en/article/6425177

Download Persian Version:
https://daneshyari.com/article/6425177

Daneshyari.com

[^0]: * Current address: Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China.

 E-mail addresses: lizhan@math.rutgers.edu, lizhan@math.pku.edu.cn.

