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We prove that convex hypersurfaces in Rn+1 contracting 
under the flow by any power α > 1

n+2 of the Gauss curvature 
converge (after rescaling to fixed volume) to a limit which is 
a smooth, uniformly convex self-similar contracting solution 
of the flow. Under additional central symmetry of the initial 
body we prove that the limit is the round sphere for α ≥ 1.
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1. Introduction

In this paper we study the flow of convex hypersurfaces X̃(·, τ) : M → R
n+1 by the 

α-power of Gauss curvature:

∂

∂τ
X̃(x, τ) = −K̃α(x, τ) ν(x, τ). (1.1)

Here ν(x, τ) is the unit exterior normal at X̃(x, τ) of M̃τ = X̃(M, τ), and K̃(x, τ) is 
the Gauss curvature of M̃τ at X̃(x, τ) (the tildes distinguish these from the normalized 
counterparts introduced below).

Equation (1.1) is a parabolic fully nonlinear equation of Monge–Ampére type, hence 
the study sheds light on the general theory of such equations. The case α = 1 was 
proposed by Firey [19] as a model for the wearing of tumbling stones. The equation with 
general powers also arises in the study of affine geometry and of image analysis [1,15,31,
33,34]. For large α the equation becomes more degenerate and for small α it becomes 
more singular. Studying them together gives an example of nonlinear parabolic equations 
with varying degeneracy. The interested reader may consult [7] for motivation for the 
study of this flow. For the short time existence, it was proved in [39] for α = 1, and for 
any α > 0 in [17] that the flow shrinks any smooth, uniformly convex body M0 = ∂Ω0
to a point z∞ in finite time T > 0. An important differential Harnack estimate (also 
referred as Li–Yau–Hamilton type estimate) was later proved in [18] (see also [2]). The 
current paper concerns the asymptotics of the solutions as the time approaches to the 
singular time T .

The study of the asymptotic behavior is equivalent to the large time behavior of 
the normalized flow, which is obtained by re-scaling about the final point to keep the 
enclosed volume fixed, and suitably re-parameterizing the time variable (see section 3
for details):

∂

∂t
X(x, t) = − Kα(x, t)∫

Sn
Kα−1 ν(x, t) + X(x, t). (1.2)

Here we write 
∫
Sn

f(x)dθ(x) = 1
ωn

∫
Sn

f(x) dθ(x) for any continuous function f on Sn, 
where dθ(x) is the spherical Lebesgue measure and ωn = |Sn|, and we interpret K as a 
function on Sn via the Gauss map diffeomorphism ν : Mt → S

n. It can be easily checked 
that Mt = X(M, t) encloses a convex body Ωt whose volume |Ωt| changes according to 
the equation:

d

dt
|Ωt| = − 1∫

Sn
Kα−1

∫
Mt

Kα +
∫
Mt

〈X, ν〉

= −ωn + (n + 1)|Ωt|.

Hence if |Ω0| = |B(1)| = ωn

n+1 , where B(1) ⊂ R
n+1 is the unit ball, then |Ωt| = |B(1)|

for all t.
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