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We present a general technique for computing large deviations 
of nonlinear functions of independent Bernoulli random 
variables. The method is applied to compute the large 
deviation rate functions for subgraph counts in sparse random 
graphs. Previous technology, based on Szemerédi’s regularity 
lemma, works only for dense graphs. Applications are also 
made to exponential random graphs and three-term arithmetic 
progressions in random sets of integers.
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1. Introduction

1.1. A motivating example

Let G(N, p) be the Erdős–Rényi random graph on N vertices with edge probability p, 
that is, the classical model where any two vertices are connected by an edge with proba-
bility p, independent of all else. Let T denote the number of triangles in this graph. It has 
been an open question in the random graph literature for a long time [23] to determine 
the behavior of the upper tail of T , that is, probabilities of the type P(T ≥ (1 + δ)E(T )). 
The main difficulty with this problem, and the reason why it may be appealing to a 
probabilist, is that the standard tools from concentration of measure and other proba-
bility inequalities do not seem to work so well in this setting, in spite of the fact that 
the number of triangles in an Erdős–Rényi graph is simply a degree three polynomial of 
independent Bernoulli random variables.

After a series of successively improving suboptimal results by many authors over many 
years, a big advance was made by Kim and Vu [29] and simultaneously by Janson et 
al. [22] in 2004 who showed that if p ≥ N−1 logN , then

exp(−c1(δ)N2p2 log(1/p)) ≤ P(T ≥ (1 + δ)E(T )) ≤ exp(−c2(δ)N2p2) ,

where c1(δ) and c2(δ) are constants depending on δ only.
Several years later, the logarithmic discrepancy between the exponents on the two 

sides was removed by Chatterjee [12] and independently by DeMarco and Kahn [18,19], 
where it was shown that when p ≥ N−1 logN ,

exp(−c1(δ)N2p2 log(1/p)) ≤ P(T ≥ (1 + δ)E(T ))

≤ exp(−c2(δ)N2p2 log(1/p)) .

This still left open the question of determining the dependence of the exponent on δ. 
When p is fixed and N tends to infinity, the problem was solved in 2011 by Chatterjee and 
Varadhan [16], confirming a conjecture from an unpublished manuscript of Bolthausen, 
Comets and Dembo [4]. In [16], it was shown that for fixed p ∈ (0, 1) and δ > 0,

P(T ≥ (1 + δ)E(T )) = exp(−c(δ, p)N2(1 − o(1))) (1.1)

as N → ∞, where

c(δ, p) = 1
2 inf

f
{Ip(f) : T (f) ≥ (1 + δ)p3} , (1.2)

where f : [0, 1]2 → [0, 1] is any Lebesgue measurable function that satisfies f(x, y) =
f(y, x) for all x and y,
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