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A classical theorem proved in 1942 by I.J. Schoenberg de-
scribes all real-valued functions that preserve positivity when 
applied entrywise to positive semidefinite matrices of arbitrary 
size; such functions are necessarily analytic with non-negative 
Taylor coefficients. Despite the great deal of interest generated 
by this theorem, a characterization of functions preserving 
positivity for matrices of fixed dimension is not known.
In this paper, we provide a complete description of poly-
nomials of degree N that preserve positivity when applied 
entrywise to matrices of dimension N . This is the key step for 
us then to obtain negative lower bounds on the coefficients of 
analytic functions so that these functions preserve positivity 
in a prescribed dimension. The proof of the main technical in-
equality is representation theoretic, and employs the theory of 
Schur polynomials. Interpreted in the context of linear pencils 
of matrices, our main results provide a closed-form expression 
for the lowest critical value, revealing at the same time an 
unexpected spectral discontinuity phenomenon.
Tight linear matrix inequalities for Hadamard powers of ma-
trices and a sharp asymptotic bound for the matrix-cube prob-
lem involving Hadamard powers are obtained as applications. 
Positivity preservers are also naturally interpreted as solutions 
of a variational inequality involving generalized Rayleigh quo-
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tients. This optimization approach leads to a novel description 
of the simultaneous kernels of Hadamard powers, and a family 
of stratifications of the cone of positive semidefinite matrices.
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1. Introduction and main results

Transformations, linear or not, which preserve matrix structures with positivity con-
straints have been recently studied in at least three distinct frameworks: statistical 
mechanics and the geometry of polynomials [8–10]; global optimization algorithms based 
on the cone of hyperbolic or positive definite polynomials [5,24,39]; the statistics of big 
data, having the correlation matrix of a large number of random variables as the central 
object [4,25,32,40,46]. The present article belongs in the latter two categories, although 
the main result may be of independent algebraic interest.

To describe the contents of this paper, we adopt some terminology. For a set K ⊂ C

and an integer N ≥ 1, denote by PN (K) the cone of positive semidefinite N×N matrices 
with entries in K. A function f : K → C naturally acts entrywise on PN (K), so that 
f [A] := (f(aij)) for any A = (aij) ∈ PN (K). Akin to the theory of positive definite 
functions, it is natural to seek characterizations of those functions f such that f [A] is 
positive semidefinite for all A ∈ PN (K). A well-known theorem of Schoenberg [42] states 
that f [A] is positive semidefinite for all A ∈ PN ([−1, 1]) of all dimensions N ≥ 1 if and 
only if f is absolutely monotonic on [0, 1] (i.e., analytic with non-negative Taylor coeffi-
cients). To put Schoenberg’s 1942 article in historical perspective, we have to recall that 
the theory of absolute monotone functions was already established by S. Bernstein [3]. 
Also, it is worth mentioning that Schoenberg was working around that time on the re-
lated and more general question of isometrically embedding positive definite metrics into 
Hilbert space; see, for instance, [45]. The parallel theory of matrix monotone functions, 
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