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1. Introduction

Recall that a Toeplitz operator on the Hardy space of analytic functions H2(D) is 
defined by

Tϕ : H2(D) → H2(D) where Tϕf = PH2 (ϕf) .

It is well known that this operator is bounded if and only if ϕ ∈ L∞(T). Equivalently, the 
Toeplitz operator Tϕ is bounded if and only if supλ∈D ‖Tϕkλ‖H2 < ∞ where kλ(z) = 1

1−λz

is the reproducing kernel for H2(D). An infamous conjecture of Sarason, [8], states that 
the composition of two (potentially unbounded) Toeplitz operators is bounded, i.e. TϕTψ

is a bounded operator, if and only if a certain relatively simple testing condition on the 
symbols ϕ and ψ holds, see [10]. However, even though this conjecture seems quite 
reasonable, a beautiful counterexample was constructed by F. Nazarov in [2] disproving 
this simple testing condition.

In this paper we are interested in a discrete dyadic analogue of the Sarason conjecture. 
This discrete problem is already very challenging and captures much of the difficulty as-
sociated with Sarason’s original conjecture but is more amenable to study because of the 
dyadic nature of the problem. In particular, we are concerned with dyadic Haar para-
products, and obtaining necessary and sufficient conditions for the boundedness of the 
composition of two such paraproducts. The conditions characterizing the boundedness 
will be much more general than just those characterizing boundedness for each individual 
paraproduct – just as the condition ‖bd‖∞ < ∞ that characterizes boundedness of the 
composition Mb ◦Md of pointwise multipliers is much more general than the conditions 
‖b‖∞ < ∞ and ‖d‖∞ < ∞ that characterize individual boundedness of the pointwise 
multipliers.

Let D denote the usual dyadic grid of intervals on the real line. We consider sequences 
b = {bI}I∈D of complex numbers on D, which we often refer to as symbols. Define the 
Haar function h0

I and averaging function h1
I by

h0
I ≡ hI ≡ 1√

|I|
(
−1I− + 1I+

)
and h1

I ≡ 1
|I|1I , I ∈ D.

The operators considered in this paper are the following dyadic paraproducts.
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