

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Critical metrics on connected sums of Einstein four-manifolds

Matthew J. Gursky ^a, Jeff A. Viaclovsky ^{b,*}

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, United States
 Department of Mathematics, University of Wisconsin, Madison, WI 53706, United States

ARTICLE INFO

Article history: Received 15 September 2015 Accepted 11 November 2015 Available online 8 February 2016

Available online 8 February 201 Communicated by Tomasz S. Mrowka

Keywords:
Einstein metrics
Quadratic curvature functionals
Gluing
Critical metrics

ABSTRACT

We develop a gluing procedure designed to obtain canonical metrics on connected sums of Einstein four-manifolds. The main application is an existence result, using two well-known Einstein manifolds as building blocks: the Fubini–Study metric on \mathbb{CP}^2 and the product metric on $S^2\times S^2$. Using these metrics in various gluing configurations, toric-invariant critical metrics are found on connected sums for a specific Riemannian functional, which depends on the global geometry of the factors. Furthermore, using certain quotients of $S^2\times S^2$ as one of the gluing factors, critical metrics on several non-simply-connected manifolds are also obtained.

© 2016 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	211
2.	The building blocks	220
3.	The nonlinear map	227
4.	Cokernel on a compact manifold	238
5.	Cokernel on an asymptotically flat manifold	242

E-mail addresses: mgursky@nd.edu (M.J. Gursky), jeffv@math.wisc.edu (J.A. Viaclovsky).

^{*} Corresponding author.

6.	Asymptotics of the cokernel	51
7.	Some auxiliary linear equations	57
8.	Computation of the leading term	34
9.	Naïve approximate metric	74
10.	Refined approximate metric	79
11.	Lyapunov-Schmidt reduction	39
12.	Completion of proofs)1
Ackno	owledgments	10
Apper	ndix A. Proof of Proposition 8.5	10
Apper	ndix B. Non-simply-connected examples	13
Refere	ences	14

1. Introduction

A Riemannian manifold (M^4, g) in dimension four is critical for the Einstein–Hilbert functional

$$\mathcal{R}(g) = Vol(g)^{-1/2} \int_{M} R_g dV_g, \tag{1.1}$$

where R_q is the scalar curvature if and only if it satisfies

$$Ric(g) = \lambda \cdot g,$$
 (1.2)

where λ is a constant; such Riemannian manifolds are called Einstein manifolds. Non-collapsing limits of Einstein manifolds have been studied in great depth [3,7,37]. In particular, with certain geometric conditions, the limit space is an orbifold, with asymptotically locally Euclidean (ALE) spaces bubbling off at the singular points. A natural question is whether it is possible to reverse this process: Can one start with the limit space, and glue on a bubble in order to obtain an Einstein metric? A recent article of Olivier Biquard makes great strides in the Poincaré–Einstein setting [10]. In this work it is shown that a $\mathbb{Z}/2\mathbb{Z}$ -orbifold singularity p of a non-degenerate Poincaré–Einstein orbifold (M,g) has a Poincaré–Einstein resolution obtained by gluing on an Eguchi–Hanson metric if and only if the condition

$$\det(\mathbf{R}^+(p)) = 0 \tag{1.3}$$

is satisfied, where $\mathbf{R}^+(p): \Lambda_+^2 \to \Lambda_+^2$ is the purely self-dual part of the curvature operator at p. The self-adjointness of this gluing problem is overcome by the freedom of changing the boundary data of the Poincaré–Einstein metric.

However, not much is known about gluing compact manifolds together in the Einstein case. In this work, we will replace the Einstein equations with a generalization of the Einstein condition. Namely, we ask whether it is possible to glue together Einstein metrics and produce a critical point of a certain Riemannian functional generalizing

Download English Version:

https://daneshyari.com/en/article/6425271

Download Persian Version:

https://daneshyari.com/article/6425271

<u>Daneshyari.com</u>