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Higher-order Fourier analysis is a powerful tool that can be 
used to analyze the densities of linear systems (such as arith-
metic progressions) in subsets of Abelian groups. We are in-
terested in the group Fn

p , for fixed p and large n, where it is 
known that analyzing these averages reduces to understanding 
the joint distribution of a family of sufficiently pseudorandom 
(formally, high-rank) nonclassical polynomials applied to the 
corresponding system of linear forms.
In this work, we give a complete characterization for these dis-
tributions for arbitrary systems of linear forms. This extends 
previous works which accomplished this in some special cases. 
As an application, we resolve a conjecture of Gowers and Wolf 
on the true complexity of linear systems. Our proof deviates 
from that of the previously known special cases and requires 
several new ingredients. One of which, which may be of inde-
pendent interest, is a new theory of homogeneous nonclassical 
polynomials.
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1. Introduction

Gowers’ seminal work in combinatorial number theory [5] initiated an extension of 
the classical Fourier analysis, called higher-order Fourier analysis of Abelian groups. 
Higher-order Fourier analysis has been very successful in dealing with problems regarding 
the densities of small linear structures (e.g. arithmetic progressions) in subsets of Abelian 
groups. It is possible to express such densities as certain analytic averages. For example, 
the density of the three term arithmetic progressions in a subset A of an Abelian group G

can be expressed as Ex,y∈G [1A(x)1A(x + y)1A(x + 2y)]. More generally, one is often 
interested in analyzing

E
x1,...,xk∈G

[
1A(L1(x1, . . . , xk)) · · ·1A(Lm(x1, . . . , xk))

]
, (1)

where each Li is a linear form on k variables. Averages of this type are of interest in 
computer science, additive combinatorics, and analytic number theory.

In this paper we are only interested in the group Fn where F = Fp for a fixed prime p

and n is large. In the classical Fourier analysis of Fn, a function is expressed as a 
linear combination of the characters of Fn. Note that the characters of Fn are expo-
nentials of linear polynomials: for α ∈ F

n, the corresponding character is defined as 
χα(x) = e (1/p ·

∑n
i=1 αixi), where T = R/Z is the torus and e : T → C is given by 

e (a) = exp(2πi · a). In higher-order Fourier analysis, the linear polynomials are replaced 
by higher degree “nonclassical polynomials” (a generalization of classical polynomials), 
and one would like to approximate a function f : Fn → C by a linear combination of such 
higher-order terms. A thorough treatment of nonclassical polynomials is presented in Sec-
tion 2.1. For now, it suffices to say that a degree-d nonclassical polynomial of depth k � 0
is given by a function P : Fn → Uk+1, where Uk+1 = 1

pk+1Z/Z is a discrete subgroup of T, 
such that P vanishes after taking d + 1 additive derivatives. The case k = 0 corresponds 
to classical polynomials. The existence of such approximations is a consequence of the so-
called “inverse theorems” for Gowers norms which are established in a sequence of papers 
by Bergelson, Green, Samorodnitsky, Szegedy, Tao, and Ziegler [19,20,17,13,11,1,16].

Higher-order Fourier expansions are extremely useful in studying averages that are 
defined through linear structures. To analyze the average in (1), one approximates 
1A ≈ Γ(P1, . . . , PC) where C is a constant which depends only on the approxima-
tion guarantees, P1, . . . , PC are bounded degree polynomials of corresponding depths 
k1, . . . , kC , and Γ :

∏C
i=1 Uki+1 → R is some composition function. Then applying the 

classical Fourier transform to Γ yields the higher-order Fourier expansion

1A ≈ Γ(P1, . . . , PC) ≈
∑
α

Γ̂(α) e
(

C∑
i=1

αiPi

)
,

where the coefficients Γ̂(α) are complex numbers, and α takes values in 
∏C

i=1 Zpki+1 ∼=∏C
i=1 Uki+1.
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