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We study the space of generalized translation invariant val-
uations on a finite-dimensional vector space and construct a 
partial convolution which extends the convolution of smooth 
translation invariant valuations. Our main theorem is that 
McMullen’s polytope algebra is a subalgebra of the (partial) 
convolution algebra of generalized translation invariant val-
uations. More precisely, we show that the polytope algebra 
embeds injectively into the space of generalized translation in-
variant valuations and that for polytopes in general position, 
the convolution is defined and corresponds to the product in 
the polytope algebra.
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1. Introduction

Let V be an n-dimensional vector space, V ∗ the dual vector space, K(V ) the set 
of non-empty compact convex subsets in V , endowed with the topology induced by 
the Hausdorff metric for an arbitrary Euclidean structure on V , and P(V ) the set of 
polytopes in V . A valuation is a map μ : K(V ) → C such that

μ(K ∪ L) + μ(K ∩ L) = μ(K) + μ(L)

whenever K, L, K ∪ L ∈ K(V ). Continuity of valuations will be with respect to the 
Hausdorff topology.

Examples of valuations are measures, the intrinsic volumes (in particular the Euler 
characteristic χ) and mixed volumes.

Let Val(V ) denote the (Banach-)space of continuous, translation invariant valuations. 
It was the object of intensive research during the last few years, compare [3,9,11,12,
14–17,19,21] and the references therein.

Valuations with values in semi-groups other than C have also attracted a lot of interest. 
We only mention the recent papers [1,2,18,23,25,29,31–34] to give a flavor on this active 
research area.

Of particular importance is the class of the so-called smooth valuations because it 
admits various algebraic structures, which include two bilinear pairings, known as prod-
uct and convolution, and a Fourier-type duality interchanging them. These algebraic 
structures are closely related to important notions from convex and integral geometry, 
such as the Minkowski sum, mixed volumes, and kinematic formulas. This emerging new 
theory is known as algebraic integral geometry [14,21].

A different, more classical type of algebraic object playing an important role in convex 
geometry is McMullen’s algebra of polytopes. In this paper, we show how McMullen’s 
algebra fits into the framework of algebraic integral geometry. More precisely, we show 
that McMullen’s algebra can be embedded as a subalgebra of the space of generalized 
valuations, which is, roughly speaking, the dual space of smooth valuations.

Let us now give the necessary background required to state our main theorems.
The group GL(V ) acts in the natural way on Val(V ). The dense subspace of 

GL(V )-smooth vectors in Val(V ) is denoted by Val∞(V ). It carries a Fréchet topology 
which is finer than the induced topology.

In [16], a convolution product on Val∞(V ) ⊗ Dens(V ∗) was constructed. Here and in 
the following, Dens(W ) denotes the 1-dimensional space of densities on a linear space W . 
Note that Dens(V ) ⊗Dens(V ∗) ∼= C: if vol is any choice of Lebesgue measure on V , and 
vol∗ the corresponding dual measure on V ∗, then vol⊗ vol∗ ∈ Dens(V ) ⊗ Dens(V ∗) is 
independent of the choice of vol. If φi(K) = vol(K + Ai) ⊗ vol∗ with smooth compact 
strictly convex bodies A1, A2, then φ1 ∗ φ2(K) = vol(K +A1 +A2) ⊗ vol∗. By Alesker’s 
proof [3] of McMullen’s conjecture, linear combinations of such valuations are dense in 
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