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Lp

radL
2
ang(Rn), n ≥ 2.
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1. Introduction

A well-known open problem in Fourier analysis is the Bochner–Riesz operator conjec-
ture, which asserts the Lp-boundedness of the Fourier multipliers
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T̂αf(ξ) =
(
1 − |ξ|2

)α
+f̂(ξ)

on Lp(Rn), so long as

2n
n + 1 + 2α < p <

2n
n− 1 − 2α

where 0 < α < (n − 1)/2 and

f̂(ξ) =
∫
Rn

e−2πix·ξf(x) dx

denotes the Fourier transform in Rn.
The problem is well understood in dimensions n = 1 and n = 2 (see [27,6,15,9]). But 

in higher dimensions, although there are several interesting results by many authors, it 
remains open.

Its relevance is due, on the one hand, to the very natural question being asked, but 
also because of its close connection with some other basic objects, namely the so-called 
Kakeya maximal function, the restriction properties of the Fourier transform, or the 
covering properties satisfied by parallelepipeds in Rn having arbitrary directions and 
eccentricities.

There is also the hope that obtaining deep understanding of the Bochner–Riesz op-
erators could be a first step in the project of extending the classical Calderón–Zygmund 
theory of singular integrals, or pseudodifferential operators, going beyond kernels whose 
singularities are located only at the origin or at infinity, as is demanded in several areas 
of number theory or PDEs.

In the extreme case, α = 0, the multiplier T = T0 is given by the indicator function 
of the unit ball. By a remarkable result of C. Fefferman [14] we know that it is bounded 
only in the obvious case p = 2, disproving the conjecture about the boundedness of T in 
the range 2n/(n + 1) < p < 2n/(n − 1).

In its proof Fefferman made use of the properties of the Kakeya sets in the plane (for 
every N � 1 there is a set whose measure is less than 1/ logN but containing a rectangle 
of dimensions 1 ×1/N on every direction), but also of a previous result due to Y. Meyer, 
who observed that the Lp-boundedness of T implies a vector-valued control for Hilbert 
transforms in different directions of the space. More concretely:

Let

Hωf(x) = p.v.
∞∫

−∞

f(x− tω)
t

dt, ω ∈ Sn−1. (1)

Then T bounded on Lp(Rn) implies
∥∥∥(∑ |Hωj

fj |2
)1/2∥∥∥

p
�

∥∥∥(∑ |fj |2
)1/2∥∥∥

p
.
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