Advances in Mathematics 290 (2016) 919-937

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Diophantine analysis in beta-dynamical systems and Hausdorff dimensions $\overset{\bigstar}{}$

MATHEMATICS

2

Fan Lü^{a,*}, Jun Wu^{b,*}

 ^a Department of Mathematics, Sichuan Normal University, 610066, Chengdu, PR China
 ^b School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074, Wuhan, PR China

ARTICLE INFO

Article history: Received 21 May 2015 Received in revised form 28 December 2015 Accepted 28 December 2015 Available online 6 January 2016 Communicated by Kenneth Falconer

MSC: primary 11K55 secondary 28A80

Keywords: Beta-dynamical system Diophantine approximation Shrinking target problem Mass transference principle Hausdorff dimension

ABSTRACT

Let $\{x_n\}_{n\geq 1} \subset [0,1]$ be a sequence of real numbers and let $\varphi \colon \mathbb{N} \to (0,1]$ be a positive function. Using the mass transference principle established by Beresnevich and Velani [1], we prove that for any $x \in (0,1]$, the Hausdorff dimension of the set

 $\{\beta > 1 \colon |T_{\beta}^n x - x_n| < \varphi(n) \text{ for infinitely many } n \in \mathbb{N}\}$

satisfies a so-called 0–1 law according to $\limsup_{n\to\infty} \frac{\log \varphi(n)}{n} = -\infty$ or not, where T_{β} is the β -transformation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Given a real number $\beta > 1$, the β -transformation $T_{\beta} \colon [0,1] \to [0,1]$ is defined by

 $^{\,\pm}\,$ This work was supported by NSFC Nos. 11225101, 11271114.

* Corresponding authors. E-mail addresses: lvfan1123@163.com (F. Lü), jun.wu@hust.edu.cn (J. Wu).

$$T_{\beta}(x) = \beta x - \lfloor \beta x \rfloor$$
 for all $x \in [0, 1]$,

where $\lfloor \cdot \rfloor$ denotes the integral part of a real number. The transformation T_{β} on [0, 1] is a typical example of monotone one-dimensional expanding dynamical system. In 1957, Rényi [9] introduced this kind of map as a model for expanding a real number in a non-integer base $\beta > 1$. Since then, much attention has been paid to this transformation, see [2,4,6,10], etc.

For $\beta > 1$, the transformation T_{β} has an invariant ergodic measure ν_{β} , which is equivalent to the Lebesgue measure \mathcal{L} on [0, 1] with the jump function

$$h_{\beta}(x) = \Theta(\beta) \sum_{x < T_{\beta}^{n} 1} \frac{1}{\beta^{n}}, \quad x \in [0, 1]$$

as its density [7] and $\Theta(\beta)$ as the normalizing factor. This measure is the unique measure of maximal entropy [5], called the Parry measure.

Given a point $x \in (0, 1]$, its orbits under β -transformations may have completely different distributions on [0, 1] when β varies. For example, when x = 1, Blanchard [2] provided a classification of the parameter space $\{\beta \in \mathbb{R} : \beta > 1\}$ according to the distributions of the orbits $\mathcal{O}_{\beta} := \{T_{\beta}^{n} 1 : n \geq 1\}$:

Class C_1 : \mathcal{O}_β is ultimately zero.

Class C_2 : \mathcal{O}_β is ultimately non-zero periodic.

Class C_3 : \mathcal{O}_β is an infinite set but 0 is not an accumulation point of \mathcal{O}_β .

Class C_4 : 0 is an accumulation point of \mathcal{O}_β but \mathcal{O}_β is not dense in [0, 1].

Class C_5 : \mathcal{O}_β is dense in [0, 1].

In [10], Schmeling proved among other things that the Class C_5 has full Lebesgue measure. This dense property of \mathcal{O}_{β} for \mathcal{L} -almost all $\beta > 1$ gives us a type of hitting property, i.e., for any $x_0 \in [0, 1]$ and \mathcal{L} -almost all $\beta > 1$,

$$\liminf_{n \to \infty} |T_{\beta}^n 1 - x_0| = 0.$$

Schmeling also showed that for any initial point $x \in (0, 1]$, its orbit under β -transformation is dense in [0, 1] for \mathcal{L} -almost all $\beta > 1$ (see Proposition 13.1 in [10]). That is, for any $x \in (0, 1]$ and $x_0 \in [0, 1]$,

$$\liminf_{n \to \infty} |T_{\beta}^n x - x_0| = 0 \quad \text{for } \mathcal{L}\text{-a.e. } \beta > 1.$$
(1.1)

In this note, we consider the convergence speed in (1.1). Let $\{x_n\}_{n\geq 1} \subset [0,1]$ be a sequence of real numbers. Let $\varphi \colon \mathbb{N} \to (0,1]$ be a positive function and $\lambda(\varphi) := \limsup_{n\to\infty} \frac{\log \varphi(n)}{n}$. For any $x \in (0,1]$, define

$$E_x(\{x_n\},\varphi) = \{\beta > 1 \colon |T_\beta^n x - x_n| < \varphi(n) \text{ for infinitely many } n \in \mathbb{N}\}.$$

We prove the following result.

920

Download English Version:

https://daneshyari.com/en/article/6425353

Download Persian Version:

https://daneshyari.com/article/6425353

Daneshyari.com