Diophantine analysis in beta-dynamical systems and Hausdorff dimensions ${ }^{\text {むT }}$

Fan Lü ${ }^{\mathrm{a}, *}$, Jun $\mathrm{Wu}^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics, Sichuan Normal University, 610066, Chengdu, PR China
${ }^{\text {b }}$ School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074, Wuhan, PR China

A R T I C L E I N F O

Article history:

Received 21 May 2015
Received in revised form 28
December 2015
Accepted 28 December 2015
Available online 6 January 2016
Communicated by Kenneth Falconer

$M S C$:

primary 11K55
secondary 28 A 80

Keywords:

Beta-dynamical system
Diophantine approximation
Shrinking target problem Mass transference principle Hausdorff dimension

A B S T R A C T

Let $\left\{x_{n}\right\}_{n \geq 1} \subset[0,1]$ be a sequence of real numbers and let $\varphi: \mathbb{N} \rightarrow(0,1]$ be a positive function. Using the mass transference principle established by Beresnevich and Velani [1], we prove that for any $x \in(0,1]$, the Hausdorff dimension of the set

$$
\left\{\beta>1:\left|T_{\beta}^{n} x-x_{n}\right|<\varphi(n) \text { for infinitely many } n \in \mathbb{N}\right\}
$$

satisfies a so-called $0-1$ law according to $\limsup _{n \rightarrow \infty} \frac{\log \varphi(n)}{n}=-\infty$ or not, where T_{β} is the β-transformation.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Given a real number $\beta>1$, the β-transformation $T_{\beta}:[0,1] \rightarrow[0,1]$ is defined by

[^0]$$
T_{\beta}(x)=\beta x-\lfloor\beta x\rfloor \quad \text { for all } x \in[0,1],
$$
where $\lfloor\cdot\rfloor$ denotes the integral part of a real number. The transformation T_{β} on $[0,1]$ is a typical example of monotone one-dimensional expanding dynamical system. In 1957, Rényi [9] introduced this kind of map as a model for expanding a real number in a non-integer base $\beta>1$. Since then, much attention has been paid to this transformation, see $[2,4,6,10]$, etc.

For $\beta>1$, the transformation T_{β} has an invariant ergodic measure ν_{β}, which is equivalent to the Lebesgue measure \mathcal{L} on $[0,1]$ with the jump function

$$
h_{\beta}(x)=\Theta(\beta) \sum_{x<T_{\beta}^{n} 1} \frac{1}{\beta^{n}}, \quad x \in[0,1]
$$

as its density $[7]$ and $\Theta(\beta)$ as the normalizing factor. This measure is the unique measure of maximal entropy [5], called the Parry measure.

Given a point $x \in(0,1]$, its orbits under β-transformations may have completely different distributions on $[0,1]$ when β varies. For example, when $x=1$, Blanchard [2] provided a classification of the parameter space $\{\beta \in \mathbb{R}: \beta>1\}$ according to the distributions of the orbits $\mathcal{O}_{\beta}:=\left\{T_{\beta}^{n} 1: n \geq 1\right\}$:

Class $C_{1}: \mathcal{O}_{\beta}$ is ultimately zero.
Class $C_{2}: \mathcal{O}_{\beta}$ is ultimately non-zero periodic.
Class $C_{3}: \mathcal{O}_{\beta}$ is an infinite set but 0 is not an accumulation point of \mathcal{O}_{β}.
Class $C_{4}: 0$ is an accumulation point of \mathcal{O}_{β} but \mathcal{O}_{β} is not dense in $[0,1]$.
Class $C_{5}: \mathcal{O}_{\beta}$ is dense in $[0,1]$.
In [10], Schmeling proved among other things that the Class C_{5} has full Lebesgue measure. This dense property of \mathcal{O}_{β} for \mathcal{L}-almost all $\beta>1$ gives us a type of hitting property, i.e., for any $x_{0} \in[0,1]$ and \mathcal{L}-almost all $\beta>1$,

$$
\liminf _{n \rightarrow \infty}\left|T_{\beta}^{n} 1-x_{0}\right|=0
$$

Schmeling also showed that for any initial point $x \in(0,1]$, its orbit under β-transformation is dense in $[0,1]$ for \mathcal{L}-almost all $\beta>1$ (see Proposition 13.1 in [10]). That is, for any $x \in(0,1]$ and $x_{0} \in[0,1]$,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left|T_{\beta}^{n} x-x_{0}\right|=0 \quad \text { for } \mathcal{L} \text {-a.e. } \beta>1 \tag{1.1}
\end{equation*}
$$

In this note, we consider the convergence speed in (1.1). Let $\left\{x_{n}\right\}_{n \geq 1} \subset[0,1]$ be a sequence of real numbers. Let $\varphi: \mathbb{N} \rightarrow(0,1]$ be a positive function and $\lambda(\varphi):=$ $\limsup _{n \rightarrow \infty} \frac{\log \varphi(n)}{n}$. For any $x \in(0,1]$, define

$$
E_{x}\left(\left\{x_{n}\right\}, \varphi\right)=\left\{\beta>1:\left|T_{\beta}^{n} x-x_{n}\right|<\varphi(n) \text { for infinitely many } n \in \mathbb{N}\right\}
$$

We prove the following result.

https://daneshyari.com/en/article/6425353

Download Persian Version:
https://daneshyari.com/article/6425353

Daneshyari.com

[^0]: * This work was supported by NSFC Nos. 11225101, 11271114.
 * Corresponding authors.

 E-mail addresses: lvfan1123@163.com (F. Lü), jun.wu@hust.edu.cn (J. Wu).

