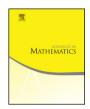


Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim



Operadic multiplications in equivariant spectra, norms, and transfers

Andrew J. Blumberg ^{a,1}, Michael A. Hill ^{b,*,2}

- ^a Department of Mathematics, University of Texas, Austin, TX 78712, United States
- ^b University of Virginia, Charlottesville, VA 22904, United States

ARTICLE INFO

Article history: Received 1 October 2013 Received in revised form 23 June 2015 Accepted 21 July 2015 Available online 31 August 2015 Communicated by the Managing Editors of AIM

Keywords:

Equivariant stable homotopy theory Operads

ABSTRACT

We study homotopy-coherent commutative multiplicative structures on equivariant spaces and spectra. We define N_{∞} operads, equivariant generalizations of E_{∞} operads. Algebras in equivariant spectra over an N_{∞} operad model homotopically commutative equivariant ring spectra that only admit certain collections of Hill–Hopkins–Ravenel norms, determined by the operad. Analogously, algebras in equivariant spaces over an N_{∞} operad provide explicit constructions of certain transfers. This characterization yields a conceptual explanation of the structure of equivariant infinite loop spaces.

To explain the relationship between norms, transfers, and N_{∞} operads, we discuss the general features of these operads, linking their properties to families of finite sets with group actions and analyzing their behavior under norms and geometric fixed points. A surprising consequence of our study is that in stark contract to the classical setting, equivariantly the little disks and linear isometries operads for a general incomplete universe U need not determine the same algebras. Our work is motivated by the need to provide a framework to describe the flavors of commutativity seen in recent work of

^{*} Corresponding author.

E-mail addresses: blumberg@math.utexas.edu (A.J. Blumberg), mikehill@virginia.edu (M.A. Hill).

A.J. Blumberg was supported in part by NSF grants DMS-0906105 and DMS-1151577.

² M.A. Hill was supported in part by NSF DMS-1207774, the Sloan Foundation, and by DARPA through the Air Force Office of Scientific Research (AFOSR) grant number HR0011-10-1-0054.

the second author and Hopkins on localization of equivariant commutative ring spectra.

© 2015 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	659
2.	Conventions on operadic algebras in equivariant spectra	664
3.	Equivariant operads and indexing systems	665
4.	Admissible sets and N_{∞} operads	671
5.	The homotopy category of N_{∞} operads	681
6.	The structure of N_{∞} -algebras	684
7.	N_{∞} -spaces and N_{∞} -ring spectra: transfers and norms	698
Ackno	owledgments	703
Apper	ndix A. The homotopy theory of algebras over N_{∞} operads in $\mathcal{S}p_G$	703
Apper	ndix B. Operadic algebras and geometric fixed points	706
Refere	ences	707

1. Introduction

One of the most important ideas in modern stable homotopy theory is the notion of a structured ring spectrum, an enhancement of the representing object for a multiplicative cohomology theory. A structured ring spectrum is a spectrum equipped with a homotopy-coherent multiplication; classically the coherence data is packaged up in an operad. When the multiplication is coherently commutative (as in the familiar examples of $H\mathbb{Z}$, ku, and MU), the classical operadic description of the multiplication involves an E_{∞} operad.

May originally observed that all E_{∞} operads are equivalent up to a zig-zag of maps of operads [17] and showed that equivalent E_{∞} operads have equivalent homotopical categories of algebras. As an elaboration of this basic insight it is now well-understood that all possible notions of commutative ring spectrum agree. For instance, in the symmetric monoidal categories of EKMM S-modules [5] and of diagram spectra [16] (i.e., symmetric spectra and orthogonal spectra), the associated categories of commutative monoids are homotopically equivalent to the classical category of E_{∞} -ring spectra [18,14]. Moreover, the homotopy theories of the categories of commutative monoids are equivalent to the homotopy theories of the category of algebras over any reasonable E_{∞} operad [5, §II.4].

Our focus in this paper is on equivariant generalizations of E_{∞} ring spectra. At first blush, it might seem that we can give an analogous account of the situation. After all, for any compact Lie group G and universe U of finite dimensional G-representations, there is the classical notion of an equivariant E_{∞} ring spectrum structured by the equivariant linear isometries operad on U [14]. For each U, there are equivariant analogues of the modern categories of spectra (i.e., equivariant orthogonal spectra and equivariant S-modules) that are symmetric monoidal categories [15,10]. Moreover, once again

Download English Version:

https://daneshyari.com/en/article/6425405

Download Persian Version:

https://daneshyari.com/article/6425405

Daneshyari.com