

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

A complete solution of Markov's problem on connected group topologies

Dikran Dikranjan^a, Dmitri Shakhmatov^{b,*}

- ^a Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy
- ^b Division of Mathematics, Physics and Earth Sciences, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan

ARTICLE INFO

Article history: Received 25 July 2014 Received in revised form 14 August 2015

Accepted 9 September 2015 Available online 6 October 2015 Communicated by Slawomir J.

In memory of Ivan Prodanov on the occasion of his 80th birthday and the 30th anniversary of his death

MSC:

 $\begin{array}{l} {\rm primary~22A05}\\ {\rm secondary~20K25,~20K45,~54A25,}\\ {\rm 54D05,~54H11} \end{array}$

Keywords:

(Locally) connected group (Locally) pathwise connected group Unconditionally closed subgroup Markov's problem Hartman—Mycielski construction Ulm—Kaplanski invariants

ABSTRACT

Every proper closed subgroup of a connected Hausdorff group must have index at least $\mathfrak c$, the cardinality of the continuum. 70 years ago Markov conjectured that a group G can be equipped with a connected Hausdorff group topology provided that every subgroup of G which is closed in all Hausdorff group topologies on G has index at least $\mathfrak c$. Counter-examples in the non-abelian case were provided 25 years ago by Pestov and Remus, yet the problem whether Markov's Conjecture holds for abelian groups G remained open. We resolve this problem in the positive.

© 2015 Elsevier Inc. All rights reserved.

^{*} Corresponding author. E-mail addresses: dikran.dikranjan@uniud.it (D. Dikranjan), dmitri.shakhmatov@ehime-u.ac.jp (D. Shakhmatov).

As usual, \mathbb{Z} denotes the group of integers, $\mathbb{Z}(n)$ denotes the cyclic group of order n, \mathbb{N} denotes the set of natural numbers, \mathbb{P} denotes the set of all prime numbers, |X| denotes the cardinality of a set X, \mathfrak{c} denotes the cardinality of the continuum and ω denotes the cardinality of \mathbb{N} .

Let G be an abelian group. For a cardinal σ , we use $G^{(\sigma)}$ to denote the direct sum of σ many copies of the group G. For $m \in \mathbb{N}$, we let

$$mG = \{mg : g \in G\} \text{ and } G[m] = \{g \in G : mg = 0\},\$$

where 0 is the zero element of G. A group G is bounded (or has finite exponent) if $mG = \{0\}$ for some integer $m \geq 1$; otherwise, G is said to be unbounded. We denote by

$$t(G) = \bigcup_{m \in \mathbb{N}} G[m] \tag{1}$$

the torsion subgroup of G. The group G is torsion if t(G) = G.

As usual, we write $G \cong H$ when groups G and H are isomorphic.

We refer the reader to [6,14,15,18,19] for standard notions related to algebra, topology and topological groups.

All topological groups and all group topologies are assumed to be Hausdorff.

1. Markov's problem for abelian groups

Markov [21,22] says that a subset X of a group G is unconditionally closed in G if X is closed in every Hausdorff group topology on G.

Every proper closed subgroup of a connected group must have index at least \mathfrak{c} .¹ Therefore, if a group admits a connected group topology, then all its proper unconditionally closed subgroups necessarily have index at least \mathfrak{c} ; see [23]. Markov [23, Problem 5, p. 271] asked if the converse is also true.

Problem 1.1. If all proper unconditionally closed subgroups of a group G have index at least \mathfrak{c} , does then G admit a connected group topology?

Definition 1.2. For brevity, a group satisfying Markov's condition, namely having all proper unconditionally closed subgroups of index at least \mathfrak{c} , shall be called an M-group (the abbreviation for $Markov\ group$).

Adopting this terminology, Markov's Problem 1.1 reads: Does every M-group admit a connected group topology?

¹ Indeed, if H is a proper closed subgroup of a connected group G, the quotient space G/H is non-trivial, connected and completely regular. Since completely regular spaces of size less than \mathfrak{c} are disconnected, this shows that $|G/H| \ge \mathfrak{c}$.

Download English Version:

https://daneshyari.com/en/article/6425497

Download Persian Version:

https://daneshyari.com/article/6425497

<u>Daneshyari.com</u>