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We compute the automorphism groups of some quantized 
algebras, including tensor products of quantum Weyl algebras 
and some skew polynomial rings.
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0. Introduction

It is well known that every automorphism of the polynomial ring k[x], where k is a 
field, is determined by the assignment x �→ ax + b for some a ∈ k× := k \ {0} and b ∈ k. 
Every automorphism of k[x1, x2] is tame, that is, it is generated by affine and elementary 
automorphisms (defined below). This result was first proved by Jung [10] in 1942 for 
characteristic zero and then by van der Kulk [20] in 1953 for arbitrary characteristic. 
A structure theorem for the automorphism group of k[x1, x2] was also given in [20]. 
The automorphism group of k[x1, x2, x3] has not yet been fully understood, and the 
best result in this direction is the existence of wild automorphisms (e.g. the Nagata 
automorphism) by Shestakov–Umirbaev [16].

The automorphism group of the skew polynomial ring kq[x1, . . . , xn], where q ∈ k×

is not a root of unity and n ≥ 2, was completely described by Alev and Chamarie [2, 
Theorem 1.4.6] in 1992. Since then, many researchers have been successfully computing 
the automorphism groups of classes of interesting infinite-dimensional noncommutative 
algebras, including certain quantum groups, generalized quantum Weyl algebras, skew 
polynomial rings and many more – see [2–5,8,19,21,22], among others. In particular, 
Yakimov has proved the Andruskiewitsch–Dumas conjecture and the Launois–Lenagan 
conjecture by using a rigidity theorem for quantum tori, see [21,22], each of which de-
termines the automorphism group of a family of quantized algebras with parameter q
being not a root of unity. See also [9] for a uniform approach to these two conjectures.

Determining the automorphism group of an algebra is generally a very difficult prob-
lem. In [6] we introduced the discriminant method to compute automorphism groups of 
some noncommutative algebras. In this paper we continue to develop new methods and 
extend ideas from [6] for both discriminants and automorphism groups.

Suppose A is a filtered algebra with filtration {FiA}i≥0 such that the associated graded 
algebra grA is generated in degree 1. An automorphism g of A is affine if g(F1A) ⊂ F1A. 
An automorphism h of the polynomial extension A[t] is called triangular if there is a 
g ∈ Aut(A), c ∈ k× and r in the center of A such that

h(t) = ct + r and h(x) = g(x) ∈ A for all x ∈ A.

As in [6], we use the discriminant to control automorphisms and locally nilpotent deriva-
tions. Let C(A) denote the center of A. Here is the discriminant criterion for affine 
automorphisms.

Theorem 1. Assume k is a field of characteristic 0. Let A be a filtered algebra, finite 
over its center, such that the associated graded ring grA is a connected graded domain. 
Suppose that the v-discriminant dv(A/C(A)) is dominating for some v ≥ 1. Then the 
following hold.

(1) Every automorphism of A is affine, and Aut(A) is an algebraic group that fits into 
the exact sequence
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