

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

The discriminant criterion and automorphism groups of quantized algebras

MATHEMATICS

霐

S. Ceken^a, J.H. Palmieri^{b,*}, Y.-H. Wang^{c,d}, J.J. Zhang^b

^a İstanbul Aydın University, Faculty of Art and Sciences, Department of Mathematics-Computer, İstanbul, Turkey

^b Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195, USA

^c School of Mathematics, Shanghai University of Finance and Economics, China

^d Shanghai Key Laboratory of Financial Information Technology, Shanghai 200433, China

ARTICLE INFO

Article history: Received 12 February 2014 Received in revised form 28 September 2015 Accepted 29 September 2015 Communicated by Michel Van den Bergh

MSC: 16W20 11R29

Keywords: Automorphism group Skew polynomial ring Quantum Weyl algebra Discriminant Affine automorphism Triangular automorphism Elementary automorphism Locally nilpotent derivation

ABSTRACT

We compute the automorphism groups of some quantized algebras, including tensor products of quantum Weyl algebras and some skew polynomial rings.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: cekensecil@gmail.com (S. Ceken), palmieri@math.washington.edu (J.H. Palmieri), yhw@mail.shufe.edu.cn (Y.-H. Wang), zhang@math.washington.edu (J.J. Zhang).

0. Introduction

It is well known that every automorphism of the polynomial ring k[x], where k is a field, is determined by the assignment $x \mapsto ax + b$ for some $a \in k^{\times} := k \setminus \{0\}$ and $b \in k$. Every automorphism of $k[x_1, x_2]$ is *tame*, that is, it is generated by affine and elementary automorphisms (defined below). This result was first proved by Jung [10] in 1942 for characteristic zero and then by van der Kulk [20] in 1953 for arbitrary characteristic. A structure theorem for the automorphism group of $k[x_1, x_2]$ was also given in [20]. The automorphism group of $k[x_1, x_2, x_3]$ has not yet been fully understood, and the best result in this direction is the existence of wild automorphisms (e.g. the Nagata automorphism) by Shestakov–Umirbaev [16].

The automorphism group of the skew polynomial ring $k_q[x_1, \ldots, x_n]$, where $q \in k^{\times}$ is not a root of unity and $n \geq 2$, was completely described by Alev and Chamarie [2, Theorem 1.4.6] in 1992. Since then, many researchers have been successfully computing the automorphism groups of classes of interesting infinite-dimensional noncommutative algebras, including certain quantum groups, generalized quantum Weyl algebras, skew polynomial rings and many more – see [2–5,8,19,21,22], among others. In particular, Yakimov has proved the Andruskiewitsch–Dumas conjecture and the Launois–Lenagan conjecture by using a rigidity theorem for quantum tori, see [21,22], each of which determines the automorphism group of a family of quantized algebras with parameter qbeing not a root of unity. See also [9] for a uniform approach to these two conjectures.

Determining the automorphism group of an algebra is generally a very difficult problem. In [6] we introduced the discriminant method to compute automorphism groups of some noncommutative algebras. In this paper we continue to develop new methods and extend ideas from [6] for both discriminants and automorphism groups.

Suppose A is a filtered algebra with filtration $\{F_iA\}_{i\geq 0}$ such that the associated graded algebra gr A is generated in degree 1. An automorphism g of A is affine if $g(F_1A) \subset F_1A$. An automorphism h of the polynomial extension A[t] is called *triangular* if there is a $g \in \operatorname{Aut}(A), c \in k^{\times}$ and r in the center of A such that

$$h(t) = ct + r$$
 and $h(x) = g(x) \in A$ for all $x \in A$.

As in [6], we use the discriminant to control automorphisms and locally nilpotent derivations. Let C(A) denote the center of A. Here is the discriminant criterion for affine automorphisms.

Theorem 1. Assume k is a field of characteristic 0. Let A be a filtered algebra, finite over its center, such that the associated graded ring gr A is a connected graded domain. Suppose that the v-discriminant $d_v(A/C(A))$ is dominating for some $v \ge 1$. Then the following hold.

(1) Every automorphism of A is affine, and Aut(A) is an algebraic group that fits into the exact sequence

Download English Version:

https://daneshyari.com/en/article/6425522

Download Persian Version:

https://daneshyari.com/article/6425522

Daneshyari.com