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We study the interior regularity of solutions to the Dirichlet 
problem Lu = g in Ω, u = 0 in Rn\Ω, for anisotropic operators 
of fractional type

Lu(x) =
+∞∫
0

dρ

∫
Sn−1

da(ω)
2u(x) − u(x + ρω) − u(x− ρω)

ρ1+2s .

Here, a is any measure on Sn−1 (a prototype example for L
is given by the sum of one-dimensional fractional Laplacians 
in fixed, given directions).
When a ∈ C∞(Sn−1) and g is C∞(Ω), solutions are known 
to be C∞ inside Ω (but not up to the boundary). However, 
when a is a general measure, or even when a is L∞(Sn−1), 
solutions are only known to be C3s inside Ω.
We prove here that, for general measures a, solutions are 
C1+3s−ε inside Ω for all ε > 0 whenever Ω is convex. When 
a ∈ L∞(Sn−1), we show that the same holds in all C1,1

domains. In particular, solutions always possess a classical 
first derivative.
The assumptions on the domain are sharp, since if the domain 
is not convex and the measure a is singular, we construct 
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an explicit counterexample for which u is not C3s+ε for any 
ε > 0 – even if g and Ω are C∞.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Recently, a great attention in the literature has been devoted to the study of equations 
of elliptic type with fractional order 2s, with s ∈ (0, 1). The leading example of the 
operators considered is the fractional Laplacian

(−Δ)su(x) =
∫
Rn

2u(x) − u(x + y) − u(x− y)
|y|n+2s dy. (1.1)

Several similarities arise between this operator and the classical Laplacian: for instance, 
the fractional Laplacian enjoys a “good” interior regularity theory in Hölder spaces and 
in Sobolev spaces (see e.g. [6]). Nevertheless, the fractional Laplacian also presents some 
striking difference with respect to the classical case: for example, solutions are in general 
not uniformly Lipschitz continuous up to the boundary (see e.g. [5,9]) and fractional 
harmonic functions are locally dense in Ck (see [3]), in sharp contrast with respect to 
the classical case.

A simple difference between the fractional and the classical Laplacians is also given 
by the fact that the classical Laplacian may be reconstructed as the sum of finitely many 
one-dimensional operators, namely one can write

Δ = ∂2
1 + · · · + ∂2

n, (1.2)

and each ∂2
i is indeed the Laplacian in a given direction. This phenomenon is typical for 

the classical case and it has no counterpart in the fractional setting, since the operator 
in (1.1) cannot be reduced to finite sets of directions.

Nevertheless, in order to study equations in anisotropic media, it is important to 
understand operators obtained by the superposition of fractional one-dimensional (or 
lower-dimensional) operators, or, more generally, by the superposition of different op-
erators in different directions, see [8]. For this reason, we consider here the anisotropic 
integro-differential operator

Lu(x) =
+∞∫
0

dρ

∫
Sn−1

da(ω) 2u(x) − u(x + ρω) − u(x− ρω)
ρ1+2s , (1.3)

with s ∈ (0, 1). Here a is a non-negative measure on Sn−1 (called in jargon the “spectral 
measure”), and we suppose that it satisfies the following “ellipticity” assumption
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