Advances in Mathematics 288 (2016) 887-921

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

On the wave representation of hyperbolic, elliptic, and parabolic Eisenstein series $\stackrel{\bigstar}{\approx}$

MATHEMATICS

1

Jay Jorgenson^{a,*}, Anna-Maria von Pippich^b, Lejla Smajlović^c

^a Department of Mathematics, The City College of New York, Convent Avenue at 138th Street, New York, NY 10031, USA

^b Fachbereich Mathematik, Technische Universität Darmstadt, Schloßgartenstr. 7, D-64289 Darmstadt, Germany

 $^{\rm c}$ Department of Mathematics, University of Sarajevo, Zmaja od Bosne 35, 71 000 Sarajevo, Bosnia and Herzegovina

A R T I C L E I N F O

Article history: Received 3 May 2012 Received in revised form 11 May 2015 Accepted 28 October 2015 Available online 21 November 2015 Communicated by Ludmil Katzarkov

Keywords: Eisenstein series Meromorphic continuation Wave distribution

ABSTRACT

We develop a unified approach to the construction of the hyperbolic and elliptic Eisenstein series on a finite volume hyperbolic Riemann surface. Specifically, we derive expressions for the hyperbolic and elliptic Eisenstein series as integral transforms of the kernel of a wave operator. Established results in the literature relate the wave kernel to the heat kernel, which admits explicit construction from various points of view. Therefore, we obtain a sequence of integral transforms which begins with the heat kernel, obtains a Poisson and wave kernel, and then yields the hyperbolic and elliptic Eisenstein series. In the case of a non-compact finite volume hyperbolic Riemann surface, we finally show how to express the parabolic Eisenstein series in terms of the integral transform of a wave kernel.

@ 2015 Elsevier Inc. All rights reserved.

 * The first named author acknowledges grant support from the National Science Foundation and PSC-CUNY. The third named author acknowledges grant support from the Federal Ministry of Education and Research of Bosnia and Herzegovina.

* Corresponding author.

E-mail addresses: jjorgenson@mindspring.com (J. Jorgenson), pippich@mathematik.tu-darmstadt.de (A.-M. von Pippich), lejlas@pmf.unsa.ba (L. Smajlović).

http://dx.doi.org/10.1016/j.aim.2015.10.019 0001-8708/© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Non-holomorphic Eisenstein series

Let $\Gamma \subset \mathrm{PSL}_2(\mathbb{R})$ be a Fuchsian subgroup of the first kind which acts on the hyperbolic space \mathbb{H} by fractional linear transformations, and let $M = \Gamma \setminus \mathbb{H}$ be the finite volume quotient. One can view M as a finite volume hyperbolic Riemann surface, possibly with p_{Γ} cusps and e_{Γ} elliptic fixed points. Classically, associated to any cusp p_j $(j = 1, \ldots, p_{\Gamma})$ of M, there is a non-holomorphic *parabolic Eisenstein series* defined for $z \in M$ and $s \in \mathbb{C}$ with $\mathrm{Re}(s) > 1$ by

$$\mathcal{E}_{p_j}^{\mathrm{par}}(z,s) = \sum_{\eta \in \Gamma_{p_j} \setminus \Gamma} \mathrm{Im}(\sigma_{p_j}^{-1} \eta z)^s, \tag{1}$$

where $\Gamma_{p_j} := \operatorname{Stab}_{\Gamma}(p_j) = \langle \gamma_{p_j} \rangle$ is the stabilizer subgroup generated by a primitive, parabolic element $\gamma_{p_j} \in \Gamma$ and $\sigma_{p_j} \in \operatorname{PSL}_2(\mathbb{R})$ is the scaling matrix which satisfies $\sigma_{p_j}^{-1}\gamma_{p_j}\sigma_{p_j} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. The parabolic Eisenstein series is an automorphic function on Mand admits a meromorphic continuation to the whole complex *s*-plane with no poles on the line $\operatorname{Re}(s) = 1/2$ (see, for example, [3,9,10], or [15]). The parabolic Eisenstein series plays a central role in the spectral theory of automorphic functions on M by contributing the eigenfunctions for the continuous spectrum of the hyperbolic Laplacian on M, and, subsequently, in the Selberg trace formula.

In [16], Kudla and Millson defined and studied a form-valued, non-holomorphic Eisenstein series $\mathcal{E}_{\gamma,\text{KM}}^{\text{hyp}}(z,s)$ associated to any simple closed geodesic of M, or equivalently to any primitive, hyperbolic element $\gamma \in \Gamma$. In analogy with results for scalar-valued, parabolic, non-holomorphic Eisenstein series, the following results were proved in [16]. First, the Eisenstein series $\mathcal{E}_{\gamma,\text{KM}}^{\text{hyp}}(z,s)$ admits a meromorphic continuation to all $s \in \mathbb{C}$. Second, the special value at s = 0 of the meromorphic continuation is a harmonic form which is the Poincaré dual to the geodesic corresponding to the hyperbolic element $\gamma \in \Gamma$.

A scalar-valued, non-holomorphic, hyperbolic Eisenstein series was defined in [12], and the authors proved that the series admits a meromorphic continuation to all $s \in \mathbb{C}$. Let $\gamma \in \Gamma$ be a primitive, hyperbolic element with stabilizer Γ_{γ} . Let \mathcal{L}_{γ} be the geodesic in \mathbb{H} which is invariant by the action of γ on \mathbb{H} . Then, for $z \in M$ and $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$, the hyperbolic Eisenstein series is defined by

$$\mathcal{E}_{\gamma}^{\mathrm{hyp}}(z,s) = \sum_{\eta \in \Gamma_{\gamma} \setminus \Gamma} \cosh(d_{\mathrm{hyp}}(\eta z, \mathcal{L}_{\gamma}))^{-s},$$

where $d_{\text{hyp}}(\eta z, \mathcal{L}_{\gamma})$ denotes the hyperbolic distance from the point ηz to the arc \mathcal{L}_{γ} . In [12], it was proved that $\mathcal{E}_{\gamma}^{\text{hyp}}(z, s)$ admits an L^2 -spectral expansion, which was explicitly computed, and from which the meromorphic continuation of $\mathcal{E}_{\gamma}^{\text{hyp}}(z, s)$ in s was derived. Download English Version:

https://daneshyari.com/en/article/6425569

Download Persian Version:

https://daneshyari.com/article/6425569

Daneshyari.com