Advances in Mathematics 288 (2016) 1309-1359

The multiplicative eigenvalue problem and deformed quantum cohomology

Prakash Belkale*, Shrawan Kumar

Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, United States

ARTICLE INFO

Article history: Received 13 March 2014 Received in revised form 30 March 2015 Accepted 9 September 2015 Available online 9 December 2015 Communicated by Tony Pantev

Keywords: Quantum cohomology Multiplicative eigenvalue problem Deformation theory

ABSTRACT

We construct deformations of the small quantum cohomology rings of homogeneous spaces G/P, and obtain an irredundant set of inequalities determining the multiplicative eigen polytope for the compact form K of G.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a simple, connected, simply-connected complex algebraic group. We choose a Borel subgroup B and a maximal torus $H \subset B$. We denote their Lie algebras by \mathfrak{g} , \mathfrak{b} , \mathfrak{h} respectively. Let $R = R_{\mathfrak{g}} \subset \mathfrak{h}^*$ be the set of roots of \mathfrak{g} and let R^+ be the set of positive roots (i.e., the set of roots of \mathfrak{b}). Let $\Delta = \{\alpha_1, \ldots, \alpha_\ell\} \subset R^+$ be the set of simple roots.

Consider the fundamental alcove $\mathscr{A} \subset \mathfrak{h}$ defined by

 $\mathscr{A} = \{ \mu \in \mathfrak{h} : \alpha_i(\mu) \ge 0 \text{ for all simple roots } \alpha_i \text{ and } \theta_o(\mu) \le 1 \},\$

* Corresponding author.

E-mail addresses: belkale@email.unc.edu (P. Belkale), shrawan@email.unc.edu (S. Kumar).

where θ_o is the highest root of \mathfrak{g} . Then, \mathscr{A} parameterizes the K-conjugacy classes of K under the map $C : \mathscr{A} \to K/\operatorname{Ad} K$,

$$\mu \mapsto c(\operatorname{Exp}(2\pi i\mu)),$$

where K is a maximal compact subgroup of G and $c(\text{Exp}(2\pi i\mu))$ denotes the K-conjugacy class of $\text{Exp}(2\pi i\mu)$. Fix a positive integer $n \geq 3$ and define the *multiplicative eigen poly*tope

$$\mathscr{C}_n := \{(\mu_1, \dots, \mu_n) \in \mathscr{A}^n : 1 \in C(\mu_1) \dots C(\mu_n)\}$$

Then, \mathscr{C}_n is a rational convex polytope with nonempty interior in \mathfrak{h}^n . Our aim is to describe the facets (i.e., the codimension one faces) of \mathscr{C}_n which meet the interior of \mathscr{A}^n .

We need to introduce some more notation before we can state our results. Let P be a standard parabolic subgroup (i.e., $P \supset B$) and let $L \subset P$ be its Levi subgroup containing H. Then, $B_L := B \cap L$ is a Borel subgroup of L. We denote the Lie algebras of P, L, B_L by the corresponding Gothic characters: \mathfrak{p} , \mathfrak{l} , \mathfrak{b}_L respectively. Let $R_{\mathfrak{l}}$ be the set of roots of \mathfrak{l} and $R_{\mathfrak{l}}^+$ be the set of roots of \mathfrak{b}_L . We denote by Δ_P the set of simple roots contained in $R_{\mathfrak{l}}$ and we set

$$S_P := \Delta \setminus \Delta_P.$$

For any $1 \leq j \leq \ell$, define the element $x_j \in \mathfrak{h}$ by

$$\alpha_i(x_j) = \delta_{i,j}, \ \forall \ 1 \le i \le \ell.$$

Let W be the Weyl group of G and let W^P be the set of the minimal length representatives in the cosets of W/W_P , where W_P is the Weyl group of P. For any $w \in W^P$, let $X_w^P := \overline{BwP/P} \subset G/P$ be the corresponding Schubert variety and let $\{\sigma_w^P\}_{w \in W^P}$ be the Poincaré dual (dual to the fundamental class of X_w^P) basis of $H^*(G/P, \mathbb{Z})$.

We begin with the following theorem. It was proved by Biswas [14] in the case $G = SL_2$; by Belkale [5] for $G = SL_m$ (and in this case a slightly weaker result by Agnihotri– Woodward [1] where the inequalities were parameterized by $\langle \sigma_{u_1}^P, \ldots, \sigma_{u_n}^P \rangle_d \neq 0$); and by Teleman–Woodward [39] for general G. It may be recalled that the precursor to these results was the result due to Klyachko [23] determining the additive eigencone for SL_m .

Theorem 1.1. Let $(\mu_1, \ldots, \mu_n) \in \mathscr{A}^n$. Then, the following are equivalent:

(a) $(\mu_1, \ldots, \mu_n) \in \mathscr{C}_n$.

(b) For any standard maximal parabolic subgroup P of G, any $u_1, \ldots, u_n \in W^P$, and any $d \ge 0$ such that the Gromov-Witten invariant (cf. Definition 2.1) Download English Version:

https://daneshyari.com/en/article/6425587

Download Persian Version:

https://daneshyari.com/article/6425587

Daneshyari.com