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We construct deformations of the small quantum cohomology 
rings of homogeneous spaces G/P , and obtain an irredun-
dant set of inequalities determining the multiplicative eigen
polytope for the compact form K of G.
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1. Introduction

Let G be a simple, connected, simply-connected complex algebraic group. We choose 
a Borel subgroup B and a maximal torus H ⊂ B. We denote their Lie algebras by g, b, h
respectively. Let R = Rg ⊂ h∗ be the set of roots of g and let R+ be the set of positive 
roots (i.e., the set of roots of b). Let Δ = {α1, . . . , α�} ⊂ R+ be the set of simple roots.

Consider the fundamental alcove A ⊂ h defined by

A = {μ ∈ h : αi(μ) ≥ 0 for all simple roots αi and θo(μ) ≤ 1} ,
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where θo is the highest root of g. Then, A parameterizes the K-conjugacy classes of K
under the map C : A → K/ AdK,

μ �→ c(Exp(2πiμ)),

where K is a maximal compact subgroup of G and c(Exp(2πiμ)) denotes the K-conjugacy 
class of Exp(2πiμ). Fix a positive integer n ≥ 3 and define the multiplicative eigen poly-
tope

Cn := {(μ1, . . . , μn) ∈ A n : 1 ∈ C(μ1) . . . C(μn)} .

Then, Cn is a rational convex polytope with nonempty interior in hn. Our aim is 
to describe the facets (i.e., the codimension one faces) of Cn which meet the interior 
of A n.

We need to introduce some more notation before we can state our results. Let P
be a standard parabolic subgroup (i.e., P ⊃ B) and let L ⊂ P be its Levi subgroup 
containing H. Then, BL := B ∩ L is a Borel subgroup of L. We denote the Lie algebras 
of P , L, BL by the corresponding Gothic characters: p, l, bL respectively. Let Rl be the 
set of roots of l and R+

l
be the set of roots of bL. We denote by ΔP the set of simple 

roots contained in Rl and we set

SP := Δ \ ΔP .

For any 1 ≤ j ≤ �, define the element xj ∈ h by

αi(xj) = δi,j , ∀ 1 ≤ i ≤ �.

Let W be the Weyl group of G and let WP be the set of the minimal length represen-
tatives in the cosets of W/WP , where WP is the Weyl group of P . For any w ∈ WP , 
let XP

w := BwP/P ⊂ G/P be the corresponding Schubert variety and let {σP
w}w∈WP be 

the Poincaré dual (dual to the fundamental class of XP
w ) basis of H∗(G/P, Z).

We begin with the following theorem. It was proved by Biswas [14] in the case G = SL2; 
by Belkale [5] for G = SLm (and in this case a slightly weaker result by Agnihotri–
Woodward [1] where the inequalities were parameterized by 〈σP

u1
, . . . , σP

un
〉d = 0); and 

by Teleman–Woodward [39] for general G. It may be recalled that the precursor to 
these results was the result due to Klyachko [23] determining the additive eigencone 
for SLm.

Theorem 1.1. Let (μ1, . . . , μn) ∈ A n. Then, the following are equivalent:
(a) (μ1, . . . , μn) ∈ Cn.
(b) For any standard maximal parabolic subgroup P of G, any u1, . . . , un ∈ WP , and 

any d ≥ 0 such that the Gromov–Witten invariant (cf. Definition 2.1)
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