

Contents lists available at ScienceDirect

Advances in Mathematics

Dynamical anomalous subvarieties: Structure and bounded height theorems

Dragos Ghioca a,*, Khoa D. Nguyen b

^a Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada

b Department of Mathematics, University of British Columbia, and Pacific Institute for The Mathematical Sciences, Vancouver, BC V6T 1Z2, Canada

ARTICLE INFO

Article history:
Received 1 September 2014
Received in revised form 13
November 2015
Accepted 13 November 2015
Available online 9 December 2015
Communicated by Ravi Vakil

MSC: 11G50 37P15

Keywords:
Dynamics
Bounded height
Structure theorem
Medvedev—Scanlon theorem

ABSTRACT

According to Medvedev and Scanlon [14], a polynomial $f(x) \in$ $\mathbb{Q}[x]$ of degree $d \geq 2$ is called disintegrated if it is not conjugate to x^d or to $\pm C_d(x)$ (where C_d is the Chebyshev polynomial of degree d). Let $n \in \mathbb{N}$, let $f_1, \ldots, f_n \in \overline{\mathbb{Q}}[x]$ be disintegrated polynomials of degrees at least 2, and let $\varphi = f_1 \times \cdots \times f_n$ be the corresponding coordinate-wise self-map of $(\mathbb{P}^1)^n$. Let X be an irreducible subvariety of $(\mathbb{P}^1)^n$ of dimension r defined over \mathbb{Q} . We define the φ -anomalous locus of X which is related to the φ -periodic subvarieties of $(\mathbb{P}^1)^n$. We prove that the φ -anomalous locus of X is Zariski closed; this is a dynamical analogue of a theorem of Bombieri, Masser, and Zannier [4]. We also prove that the points in the intersection of X with the union of all irreducible φ -periodic subvarieties of $(\mathbb{P}^1)^n$ of codimension r have bounded height outside the φ -anomalous locus of X; this is a dynamical analogue of Habegger's theorem [8] which was previously conjectured in [4]. The slightly more general self-maps $\varphi = f_1 \times \cdots \times f_n$ where each $f_i \in \overline{\mathbb{Q}}(x)$ is a disintegrated rational function are also treated at the end of the paper.

E-mail addresses: dghioca@math.ubc.ca (D. Ghioca), dknguyen@math.ubc.ca (K.D. Nguyen).

 $^{^{\}diamond}$ The first author is partially supported by an NSERC grant. The second author is partially supported by a fellowship from the Pacific Institute for the Mathematical Sciences.

^{*} Corresponding author.

1. Introduction

Throughout this paper, a variety is always over \mathbb{Q} and is defined as in [1, Appendix A.4]. In other words, a variety is the set of closed points of a (not necessarily irreducible) reduced and separated scheme of finite type over \mathbb{Q} equipped with the Zariski topology, sheaf of regular functions, etc. For a map μ from a set to itself and for every positive integer m, we let μ^m denote the m-fold iterate: $\mu \circ \ldots \circ \mu$; μ^0 denotes the identity map. Let h denote the absolute logarithmic Weil height on \mathbb{P}^1 (see [1, Chapter 1] or [10, Part B]). Let n be a positive integer, we define the height function h_n on $(\mathbb{P}^1)^n$ by $h_n(a_1,\ldots,a_n):=h(a_1)+\ldots+h(a_n)$. When we say that a subset of $(\mathbb{P}^1)^n$ has bounded height, we mean boundedness with respect to h_n .

After a series of papers [3,5,4] following the seminal work [2, Theorem 1], Bombieri, Masser and Zannier define anomalous subvarieties in $\mathbb{G}^n_{\mathrm{m}}$ as follows. By a *special* subvariety of $\mathbb{G}^n_{\mathrm{m}}$, we mean a translate of an irreducible algebraic subgroup. For any irreducible subvariety $X \subseteq \mathbb{G}^n_{\mathrm{m}}$ of dimension r, an irreducible subvariety Y of X is said to be *anomalous* (or better, X-anomalous) if there exists a special subvariety Z satisfying the following conditions:

$$Y \subseteq X \cap Z \text{ and } \dim(Y) > \max\{0, \dim(X) + \dim(Z) - n\}. \tag{1}$$

We define $X^{\text{oa}} := X \setminus \bigcup_Y Y$, where Y ranges over all anomalous subvarieties of X. We let $\mathbb{G}_m^{n,[r]}$ be the union of all algebraic subgroups of \mathbb{G}_m^n of codimension r. The following has been established by Bombieri, Masser, Zannier [4, Theorem 1.4] and Habegger [8, Theorem 1.2] (after being previously conjectured in [4]):

Theorem 1.1. Let X be an irreducible subvariety of \mathbb{G}_m^n of dimension r (defined over \mathbb{Q} , as always). We have:

- (a) (Bombieri-Masser-Zannier) Structure Theorem: the set X^{oa} is Zariski open in X. Moreover, there exists a finite collection \mathcal{T} of subtori of \mathbb{G}_m^n (depending on X) such that the anomalous locus of X is the union of all anomalous subvarieties Y of X for which there exists a translate Z of a tori in \mathcal{T} satisfying $Y \subseteq X \cap Z$ and $\dim(Y) > \max\{0, \dim(X) + \dim(Z) n\}$.
- (b) (Habegger) Bounded Height Theorem: the set $X^{\mathrm{oa}} \cap \mathbb{G}_m^{n,[r]}$ has bounded height.

The Bounded Height Theorem is closely related to the problem of unlikely intersections in arithmetic geometry introduced in [2] whose motivation comes from the classical Manin–Mumford conjecture (which is Raynaud's theorem [18,19] for abelian varieties

Download English Version:

https://daneshyari.com/en/article/6425589

Download Persian Version:

https://daneshyari.com/article/6425589

Daneshyari.com