

Contents lists available at ScienceDirect

Advances in Mathematics

On quantizations of complex contact manifolds

Pietro Polesello¹

 $Dipartimento\ di\ Matematica,\ Universit\`a\ di\ Padova,\ via\ Trieste\ 63,\ 35121\ Padova,\ Italy$

ARTICLE INFO

Article history: Received 13 February 2013 Accepted 8 September 2014 Available online xxxx Communicated by Tony Pantev

MSC: 53D55 46L65 32W25 18D30

Keywords: Quantization Contact manifold Microdifferential operators Stack

ABSTRACT

A (holomorphic) quantization of a complex contact manifold is a filtered algebroid stack which is locally equivalent to the ring $\mathcal E$ of microdifferential operators and which has trivial graded. The existence of a canonical quantization has been proved by Kashiwara. In this paper we consider the classification problem, showing that the above quantizations are classified by the first cohomology group with values in a certain sheaf of homogeneous forms. Secondly, we consider the problem of existence and classification for quantizations given by algebras.

© 2014 Elsevier Inc. All rights reserved.

0. Introduction

This paper deals with the problem of existence and classification for the quantizations of complex contact manifolds.

E-mail address: pietro@math.unipd.it.

¹ The author is a member of GNAMPA of the Istituto Nazionale di Alta Matematica (INdAM). Research partially supported by Erwin Schrödinger Institute's JRF grant, by Padova University's grant CPDA122824/12 and by Fondazione Cariparo through the project Differential methods in Arithmetic, Geometry and Algebra.

Precisely, consider a complex contact manifold (Y, α) , *i.e.* a complex manifold Y endowed with a projective 1-form α (a global section of the projective cotangent bundle $P^*Y \to Y$) such that $d\alpha|_H$ is non-degenerate, where H denotes the codimension 1 subbundle of the tangent bundle associated to α via projective duality. Let $\mathcal{L} = \alpha^*\mathcal{O}_{P^*Y}(1)$ be the pull-back of the relative Serre sheaf on P^*Y : it is a locally free \mathcal{O}_Y -module of rank 1 endowed with a Lie bracket induced by α (the Lagrange bracket). Finally, denote by \mathcal{S}_Y the sheaf on Y whose local sections are symbols, *i.e.* series $\sum_{j=-\infty}^m f_j$ with $f_j \in \mathcal{L}^{\otimes j}$ and satisfying some growth conditions. \mathcal{S}_Y is endowed with a natural filtration and the associated graded sheaf is the "homogeneous coordinates ring" $\mathcal{O}_Y^{hom} = \bigoplus_{m \in \mathbb{Z}} \mathcal{L}^{\otimes m}$.

A (holomorphic) quantization algebra on (Y, α) is a sheaf of algebras \mathcal{A} on Y locally isomorphic to \mathcal{S}_Y as \mathbb{C}_Y -modules, in such a way that the product on \mathcal{S}_Y induced by that of \mathcal{A} is a formal bidifferential operator and is compatible both with the algebra structure on \mathcal{O}_Y and with the Lie bracket on \mathcal{L} . Such \mathcal{A} is naturally filtered with \mathcal{O}_Y^{hom} as graded sheaf and the above compatibility conditions mean that $\operatorname{Gr}(\mathcal{A}) \simeq \mathcal{O}_Y^{hom}$ is a graded algebra isomorphism commuting with the Poisson structures (induced by the commutator on the left-hand side and by the Lagrange bracket on the right-hand side).

Darboux's theorem for complex contact manifolds asserts that for any point $y \in Y$ there exists an open neighborhood V of y and a contact transformation $i: V \to P^*M$ for some complex manifold M (here P^*M is endowed with the canonical contact structure given by the Liouville 1-form). Since any quantization algebra on V is locally isomorphic through i to the \mathbb{C} -algebra \mathcal{E}_{P^*M} of Sato's microdifferential operators (a localization of the algebra \mathcal{D}_M of differential operators on M), it follows that the quantization algebras on Y are nothing but \mathcal{E} -algebras, i.e. \mathbb{C} -algebras locally isomorphic to $i^{-1}\mathcal{E}_{P^*M}$ for any Darboux chart $i: Y \supset V \to P^*M$.

In the case $Y = P^*M$, formal (*i.e.* without growth conditions) \mathcal{E} -algebras were classified by Boutet de Monvel in [3].

For a complex contact manifold Y, the situation is more complicated, since \mathcal{E} -algebras may not exist globally. However Kashiwara in [19] proved that there exists a canonical stack (sheaf of categories) of modules over locally defined \mathcal{E} -algebras. In fact, this stack is equivalent to the stack of modules over an algebroid stack E_Y (see [23,9]). Moreover, E_Y has the same properties of an \mathcal{E} -algebra: it is filtered, locally equivalent to an \mathcal{E} -algebra and it has \mathcal{O}_V^{hom} as associated graded stack.

Hence, it makes sense to say that E_Y is a (holomorphic) quantization of Y and to replace \mathcal{E} -algebras by \mathbb{C} -linear stacks locally equivalent to E_Y . Being locally modeled on \mathcal{E} -algebras, these objects have locally trivial graded, but their associated graded stack in general is non-trivial. Thus, we are lead to define a (\mathcal{E}, σ) -algebroid, playing the role of quantization of Y, as a filtered \mathbb{C} -linear stacks which is locally equivalent to E_Y and which has \mathcal{O}_Y^{hom} as associated graded stack.

In this paper we classify all (\mathcal{E}, σ) -algebroids on any complex contact manifold Y. This is done by means of the cohomology group $H^1(Y; \Omega_Y^{1,cl}(0))$, where $\Omega_Y^{1,cl}(0)$ denotes the push-forward of the sheaf of closed 0-homogeneous 1-forms on the canonical

Download English Version:

https://daneshyari.com/en/article/6425596

Download Persian Version:

https://daneshyari.com/article/6425596

<u>Daneshyari.com</u>