

Advances in Mathematics 268 (2015) 201-240

Geometry of pure spinor formalism in superstring theory

Mikhail V. Movshev

Stony Brook University, Stony Brook, NY 11794-3651, USA

A R T I C L E I N F O

Article history: Received 10 January 2012 Accepted 4 September 2014 Available online 10 October 2014 Communicated by Ludmil Katzarkov

MSC: primary 13F50 secondary 81R25, 81T30

Keywords: Straightened law Pure spinors Delannoy numbers Poincaré series

ABSTRACT

Projective embedding of an isotropic Grassmannian $OGr^+(5,10)$ into projective space of spinor representation S can be characterized with a help of Γ -matrices by equations $\Gamma^i_{\alpha\beta}\lambda^\alpha\lambda^\beta=0$. A polynomial function of degree N with values in S defines a map to $OGr^+(5,10)$ if its coefficients satisfy a 2N+1 quadratic equations. Algebra generated by coefficients of such polynomials is a coordinate ring of the quantum isotropic Grassmannian. We show that this ring is based on a lattice; its defining relations satisfy straightened law. This enables us to compute the Poincaré series of the ring.

@ 2014 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	202
2.	Partial order on the basis of spinor representation S	207
3.	Proof of the straightened law for algebra A	211
4.	The Poincaré series of algebra A	217
5.	Algebras of Richardson varieties	220
6.	Properties of Ê as partially ordered set	221
	6.1. Description of the affine Weyl group $W(\hat{D}_5)$	223
	6.2. Interpretation of \hat{E} in terms of the spinor representation $S[z, z^{-1}]$	224
7.	Proof of the straightened law	225
8.	Computation of Poincaré series $A_{\hat{s}}^{\hat{\delta}'}(z,q,t)$	231
	8.1. Special cases	233
	8.2. Delannoy polynomials	235

 $\label{eq:http://dx.doi.org/10.1016/j.aim.2014.09.014} 0001-8708 \ensuremath{\oslash} \ensuremath{\bigcirc} \ensuremath{\)} \ensurem$

	ents 2	
Appendix A.	Some automorphisms of \hat{A}	236
Appendix B.	Lists of obstructions	237
References		239

1. Introduction

Complex Isotropic Grassmannian $OGr^+(5, 10)$ or a space of pure spinors, as it is known in the physics literature, is a cornerstone of manifestly Poincaré covariant formulation of string theory [5]. A rigorous construction of the Hilbert space of string theory in the formalism of pure spinors remains a challenging problem (cf. [2]). Paper [1] investigates a simplified model with a quadric as the target. In [28] we proved rigorously most of the results of [1].

The paper [1] concerns certain algebra-geometric properties of the space of smooth maps $\operatorname{Map}(S^1, Q) \subset \operatorname{Map}(S^1, V^{2n})$ from a circle to a nondegenerate affine complex quadric Q in 2*n*-dimensional complex linear space V^{2n} . In [28] we observed that analysis of [1] becomes rigorous if we replace $\operatorname{Map}(S^1, Q)$ by the space of polynomial maps

$$\sum_{N\leqslant k\leqslant N'}\sum_{\boldsymbol{s}\in \mathbf{G}_n}g_{\boldsymbol{s}}^kv_{\boldsymbol{s}}z^k,\quad z\in S^1\subset\mathbb{C}^\times$$

written in some basis (v_s) , $s \in G_n = \{1, \ldots, n, 1^*, \ldots, n^*\}$ in V^{2n} and then pass to the limit $N' \to \infty$, $N \to -\infty$. In this basis the SO(2n)-invariant quadratic form q splits: $q = \sum_{i=1}^n x_i x_{i^*}$. An important technical observation, on which hinge all other results in [28], is that the algebra generated by g_s^k is an algebra with straightened law and, as a byproduct, it is Koszul. Our goal is to prove straightened law and koszulity when Q gets replaced by OGr⁺(5, 10). We denote corresponding coordinate rings by $A_N^{N'}(Q)$ and $A_N^{N'}(OGr^+(5, 10))$. We shall refer to $Proj(A_N^{N'}(Q))$ and $Proj(A_N^{N'}(OGr^+(5, 10)))$ as Quantum Quadric and Quantum Isotropic Grassmannian.

Before we plunge into rigorous analysis of the algebra $A_N^{N'}(\text{OGr}^+(5,10))$ let us briefly outline some physical applications of its Koszul property established in this paper. Recall that we started this section with an example of a quadric Q. Success with characterization of the Hilbert space $\mathcal{H}(Q)$ [1,28] depended heavily on the existence of a free graded commutative algebra resolution of $A_N^{N'}(Q)$. Is a trivial matter to construct such a resolution because $Spec(A_N^{N'}(Q))$ is a complete intersection and the standard Koszul complex does the job. Things become more complicated when Q gets replaced by $OGr^+(5,10)$ because the latter is not a complete intersection. Largely because of that it is still a challenge to give a rigorous description of $\mathcal{H}(OGr^+(5,10))$, which is one of the fundamental object in covariant string theory. The reader can consult [2] for possible approaches. One of them relies, as is the case of a quadric, on a resolution of $A_N^{N'}(OGr^+(5,10))$. The method for constructing such a resolution, which is used widely in physics, goes back to Koszul [20] and Tate [35]. It relies on analysis of constraint reducibilities. It was implemented in [12] Download English Version:

https://daneshyari.com/en/article/6425598

Download Persian Version:

https://daneshyari.com/article/6425598

Daneshyari.com