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Projective embedding of an isotropic Grassmannian
OGr+(5, 10) into projective space of spinor representation S
can be characterized with a help of Γ -matrices by equations 
Γ i
αβλ

αλβ = 0. A polynomial function of degree N with values 
in S defines a map to OGr+(5, 10) if its coefficients satisfy a 
2N +1 quadratic equations. Algebra generated by coefficients 
of such polynomials is a coordinate ring of the quantum 
isotropic Grassmannian. We show that this ring is based on 
a lattice; its defining relations satisfy straightened law. This 
enables us to compute the Poincaré series of the ring.
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1. Introduction

Complex Isotropic Grassmannian OGr+(5, 10) or a space of pure spinors, as it is known 
in the physics literature, is a cornerstone of manifestly Poincaré covariant formulation 
of string theory [5]. A rigorous construction of the Hilbert space of string theory in the 
formalism of pure spinors remains a challenging problem (cf. [2]). Paper [1] investigates 
a simplified model with a quadric as the target. In [28] we proved rigorously most of the 
results of [1].

The paper [1] concerns certain algebra-geometric properties of the space of smooth 
maps Map(S1, Q) ⊂ Map(S1, V 2n) from a circle to a nondegenerate affine complex 
quadric Q in 2n-dimensional complex linear space V 2n. In [28] we observed that analysis 
of [1] becomes rigorous if we replace Map(S1, Q) by the space of polynomial maps∑

N�k�N ′

∑
s∈Gn

gksvsz
k, z ∈ S1 ⊂ C

×

written in some basis (vs), s ∈ Gn = {1, . . . , n, 1∗, . . . , n∗} in V 2n and then pass to the 
limit N ′ → ∞, N → −∞. In this basis the SO(2n)-invariant quadratic form q splits: 
q =

∑n
i=1 xixi∗ . An important technical observation, on which hinge all other results 

in [28], is that the algebra generated by gks is an algebra with straightened law and, 
as a byproduct, it is Koszul. Our goal is to prove straightened law and koszulity when 
Q gets replaced by OGr+(5, 10). We denote corresponding coordinate rings by AN ′

N (Q)
and AN ′

N (OGr+(5, 10)). We shall refer to Proj(AN ′

N (Q)) and Proj(AN ′

N (OGr+(5, 10))) as 
Quantum Quadric and Quantum Isotropic Grassmannian.

Before we plunge into rigorous analysis of the algebra AN ′

N (OGr+(5, 10)) let us briefly 
outline some physical applications of its Koszul property established in this paper. Recall 
that we started this section with an example of a quadric Q. Success with characterization 
of the Hilbert space H(Q) [1,28] depended heavily on the existence of a free graded com-
mutative algebra resolution of AN ′

N (Q). Is a trivial matter to construct such a resolution 
because Spec(AN ′

N (Q)) is a complete intersection and the standard Koszul complex does 
the job. Things become more complicated when Q gets replaced by OGr+(5, 10) because 
the latter is not a complete intersection. Largely because of that it is still a challenge to 
give a rigorous description of H(OGr+(5, 10)), which is one of the fundamental object in 
covariant string theory. The reader can consult [2] for possible approaches. One of them 
relies, as is the case of a quadric, on a resolution of AN ′

N (OGr+(5, 10)). The method for 
constructing such a resolution, which is used widely in physics, goes back to Koszul [20]
and Tate [35]. It relies on analysis of constraint reducibilities. It was implemented in [12]
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