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We develop a Galois theory for linear differential equations
equipped with the action of an endomorphism. This theory is
aimed at studying the difference algebraic relations among the
solutions of a linear differential equation. The Galois groups
here are linear difference algebraic groups, i.e., matrix groups
defined by algebraic difference equations.
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0. Introduction

Linear differential equations with coefficients in a differential field (K, δ) and their
behavior under the action of an endomorphism σ of K are a frequent object of study.
Let us start with some classical examples. For instance, one can consider the field K =
C(α, x) of rational functions in the variables α, x and equip K with the derivation δ = d

dx
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and the endomorphism σ : f(α, x) �→ f(α+1, x). The Bessel function Jα(x), which solves
Bessel’s differential equation

x2δ2(y) + xδ(y) +
(
x2 − α2)y = 0

satisfies the linear difference equation

xJα+2(x) − 2(α + 1)Jα+1(x) + xJα(x) = 0.

Contiguity relations for hypergeometric series provide a large class of examples in a
similar spirit. (See for instance [51, Chapter XIV].)

Another occasion, where a linear differential equation comes naturally equipped with
the action of an endomorphism arises in the p-adic analysis of linear differential equations,
when considering Frobenius lifts. For example, let p be a prime number and let us
consider the field Cp with its norm | |, such that |p| = p−1, and an element π ∈ Cp

verifying πp−1 = −p. Following [19, Chapter II, §6] the series θ(x) ∈ Cp[[x]], defined by
θ(x) = exp(π(xp − x)), has a radius of convergence bigger than 1. Therefore it belongs
to the field E†

Cp
, consisting of all series

∑
n∈Z

anx
n with an ∈ Cp such that

• ∃ε > 0 such that ∀ρ ∈]1, 1 + ε[ we have limn→±∞ |an|ρn = 0 and
• supn |an| is bounded.

One can endow E†
Cp

with an endomorphism σ:
∑

n∈Z
anx

n �→
∑

n∈Z
anx

pn. (For the sake
of simplicity we assume here that σ is Cp-linear.) The solution exp(πx) of the equation
δ(y) = πy, where δ = d

dx , does not belong to E†
Cp

, since it has radius of convergence 1.
Moreover, exp(πx) is a solution of an order one linear difference equation with coefficients
in E†

Cp
, namely:

σ(y) = θ(x)y.

So, here is another very classical situation in which one considers solutions of a linear
differential equation and finds difference algebraic relations among them. (Coincidentally,
in the above two examples the difference algebraic relations are linear.)

Understanding the relations among solutions of an equation is a question which is
very much in the spirit of Galois theory. In this article we introduce a Galois theory
which is able to handle linear differential equations in situations like the ones described
above. More precisely, we develop a Galois theory which deals with the difference alge-
braic relations among solutions of linear differential equations. The Galois groups here
are linear difference algebraic groups, i.e., matrix groups defined by algebraic difference
equations.

Galois theories for various types of equations have become available over the years.
The classical Galois theory of linear differential (or difference) equations, also known as
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