

Available online at www.sciencedirect.com

ScienceDirect

ADVANCES IN Mathematics

Advances in Mathematics 250 (2014) 596-610

www.elsevier.com/locate/aim

Local cohomology with support in ideals of maximal minors and sub-maximal Pfaffians

Claudiu Raicu a,b,*, Jerzy Weyman c, Emily E. Witt d

^a Department of Mathematics, Princeton University, Princeton, NJ 08544, United States
 ^b Institute of Mathematics "Simion Stoilow" of the Romanian Academy, Romania
 ^c Department of Mathematics, University of Connecticut, Storrs, CT 06269, United States

Received 8 May 2013; accepted 6 October 2013

Available online 25 October 2013

Communicated by Ezra Miller

Abstract

We compute the GL-equivariant description of the local cohomology modules with support in the ideal of maximal minors of a generic matrix, as well as of those with support in the ideal of $2n \times 2n$ Pfaffians of a $(2n+1) \times (2n+1)$ generic skew-symmetric matrix. As an application, we characterize the Cohen–Macaulay modules of covariants for the action of the special linear group SL(G) on $G^{\oplus m}$. The main tool we develop is a method for computing certain Ext modules based on the geometric technique for computing syzygies and on Matlis duality.

© 2013 Elsevier Inc. All rights reserved.

MSC: 13D45; 14M12

Keywords: Covariants; Local cohomology; Maximal minors; Pfaffians

1. Introduction

In this paper we present the GL-equivariant description of the local cohomology modules of a polynomial ring S with support in an ideal I (denoted $H_I^j(S)$ for $j \ge 0$), in two cases of interest (throughout the paper, \mathbb{K} will denote a field of characteristic zero):

d Department of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States

^{*} Corresponding author.

E-mail addresses: craicu@math.princeton.edu (C. Raicu), jerzy.weyman@uconn.edu (J. Weyman), ewitt@umn.edu (E.E. Witt).

- *S* is the ring of polynomial functions on the vector space of $m \times n$ matrices with entries in \mathbb{K} , and *I* is the ideal of *S* generated by the polynomial functions that compute the $n \times n$ minors.
- S is the ring of polynomial functions on the vector space of $(2n + 1) \times (2n + 1)$ skew-symmetric matrices with entries in \mathbb{K} , and I is the ideal generated by the polynomial functions that compute the $2n \times 2n$ Pfaffians.

One of the motivations behind our investigation is trying to understand the Cohen–Macaulayness of modules of covariants. This problem has a long history, originating in the work of Stanley [16] on solution sets of linear Diophantine equations (see [20] for a survey, and also [3,18,19,21]). When H is a reductive group and W a finite dimensional H-representation, a celebrated theorem of Hochster and Roberts [11] asserts that the ring of invariants S^H , with respect to the natural action of H on the polynomial ring $S = \operatorname{Sym}(W)$, is Cohen–Macaulay. If U is another finite dimensional H-representation, the associated *module of covariants* is defined as $(S \otimes U)^H$, and is a finitely generated S^H -module. In general it is quite rare that $(S \otimes U)^H$ is Cohen–Macaulay, and our first result illustrates this in a special situation.

Theorem on Covariants of the Special Linear Group. (*Theorem 4.6*) Consider a finite dimensional \mathbb{K} -vector space G of dimension n, an integer m > n, and let $H = \operatorname{SL}(G)$ be the special linear group, $W = G^{\oplus m}$, and $S = \operatorname{Sym}(W)$. If $U = S_{\mu}G$ is the irreducible H-representation associated to the partition $\mu = (\mu_1 \geqslant \mu_2 \geqslant \cdots \geqslant \mu_n = 0)$ then $(S \otimes U)^H$ is Cohen–Macaulay if and only if $\mu_s - \mu_{s+1} < m - n$ for all $s = 1, \ldots, n-1$.

In the case when m = n + 1, the Theorem on Covariants asserts that the only Cohen–Macaulay modules of covariants are direct sums of copies of S^H , which is remarked at the end of [3]. The case n = 3 of the theorem is explained in [21], while the case n = 2 for an arbitrary H-representation W is treated in [19]. We restrict to m > n in the statement of the theorem to avoid trivial cases: if m < n then $S^H = \mathbb{K}$, while for m = n, $S^H = \mathbb{K}[\det]$ is a polynomial ring in one variable det, corresponding to the determinant of the generic $n \times n$ matrix; in both cases, all the modules of covariants are Cohen–Macaulay.

We will prove the Theorem on Covariants by computing explicitly the local cohomology modules $H_I^j(S)$, where I is the ideal generated by the maximal minors of a generic $m \times n$ matrix, and using the relationship between the local cohomology of the module $(S \otimes U)^H$ and the invariants $(H_I^j(S) \otimes U)^H$ [17, Lemma 4.1]. The indices j for which $H_I^j(S) \neq 0$ have been previously determined by the third author, as well as the description of the top non-vanishing local cohomology module $H_I^{n\cdot (m-n)+1}(S)$ as the injective hull of the residue field: see [24] for details, including some history behind the problem and its positive characteristic analogue. Writing $W = G^{\oplus m} = F \otimes G$ for some m-dimensional vector space F, we note that the ideal I (and hence the local cohomology modules $H_I^j(S)$) is preserved by the action of the product $\mathrm{GL}(F) \times \mathrm{GL}(G)$ of general linear groups. Our explicit description of the modules $H_I^j(S)$ exhibits their decomposition as a direct sum of irreducible representations of this group.

Theorem on Maximal Minors. (*Theorem 4.5*) Consider \mathbb{K} -vector spaces F and G of dimensions m and n respectively, with m > n, and integers $r \in \mathbb{Z}$, $j \ge 0$. For $1 \le s \le n$ and $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ a dominant weight (i.e. $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$), let

$$\lambda(s) = (\lambda_1, \dots, \lambda_{n-s}, \underbrace{-s, \dots, -s}_{m-n}, \lambda_{n-s+1} + (m-n), \dots, \lambda_n + (m-n)).$$

Download English Version:

https://daneshyari.com/en/article/6425695

Download Persian Version:

https://daneshyari.com/article/6425695

<u>Daneshyari.com</u>