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0. Introduction
0.1. Historical overview and motivations

A great deal of foliation theory is based on the understanding of the action of the
holonomy pseudogroup on the transversal structure of the foliation. Geometrically, the
holonomy of a (regular) foliation (M, F) at a point 2 € M is realized by a map h,, :
m1(L) = GermDiff (S), where L is the leaf at x, S is a transversal at z, and GermDiff (S)
is the space of germs of local diffeomorphisms of S. Its linearization Lin(hy) : 71 (L) —
GL(N,L) is a representation on the normal space to L at x. When one considers all
pairs of points in leaves of M, the linearization gives rise to a representation Lin(h) of
the holonomy groupoid on TM/F, the normal bundle to the leaves. Notice that TM/F
plays the role of the tangent bundle of the quotient space M/F (cf. [7, §10.2]), and is



Download English Version:

https://daneshyari.com/en/article/6425715

Download Persian Version:

https://daneshyari.com/article/6425715

Daneshyari.com


https://daneshyari.com/en/article/6425715
https://daneshyari.com/article/6425715
https://daneshyari.com/

