

Available online at www.sciencedirect.com

SciVerse ScienceDirect

ADVANCES IN Mathematics

Advances in Mathematics 244 (2013) 605-625

www.elsevier.com/locate/aim

Enumerative meaning of mirror maps for toric Calabi–Yau manifolds

Kwokwai Chan^a, Siu-Cheong Lau^b, Hsian-Hua Tseng^{c,*}

a Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
 b Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138, USA
 c Department of Mathematics, Ohio State University, 100 Math Tower, 231 West 18th Ave., Columbus, OH 43210, USA

Received 3 January 2012; accepted 30 May 2013 Available online 15 June 2013

Communicated by Bernd Siebert

Abstract

We prove that the inverse of a mirror map for a toric Calabi–Yau manifold of the form K_Y , where Y is a compact toric Fano manifold, can be expressed in terms of generating functions of genus 0 open Gromov–Witten invariants defined by Fukaya–Oh–Ohta–Ono (2010) [15]. Such a relation between mirror maps and disk counting invariants was first conjectured by Gross and Siebert (2011) [24, Conjecture 0.2 and Remark 5.1] as part of their program, and was later formulated in terms of Fukaya–Oh–Ohta–Ono's invariants in the toric Calabi–Yau case in Chan et al. (2012) [8, Conjecture 1.1]. © 2013 Elsevier Inc. All rights reserved.

MSC: primary 14N35; 53D45; secondary 14J33; 53D37; 53D12

Keywords: Open Gromov-Witten invariants; Mirror maps; GKZ systems; Toric manifolds; Calabi-Yau; Mirror symmetry

Contents

1.	Introduction	.606
2	Computing open GW invariants via <i>J</i> -functions	.610

E-mail addresses: kwchan@math.cuhk.edu.hk (K. Chan), s.lau@math.harvard.edu (S.-C. Lau), hhtseng@math.ohio-state.edu (H.-H. Tseng).

^{*} Corresponding author.

	2.1.	Open Gromov–Witten invariants of <i>Ky</i>	610
	2.2.	Computation via <i>J</i> -functions	612
3.	Toric	mirror map and the SYZ map	615
4.	GKZ	systems and period integrals	617
	4.1.	GKZ hypergeometric systems	617
	4.2.	Period integrals	618
5.	Discu	issions	621
	5.1.	B-models and mirror maps	621
	5.2.	Integral structures and Conjecture 2	622
	Ackn	owledgments	623
	Refer	ences	623

1. Introduction

Let X be an n-dimensional toric Calabi–Yau manifold, i.e. a smooth toric variety with trivial canonical line bundle $K_X \simeq \mathcal{O}_X$. Such a manifold is necessarily noncompact. Let $N = \mathbb{Z}^n$. Then $X = X_{\Sigma}$ is defined by a fan Σ in $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{R}^n$. Let $v_0, v_1, \ldots, v_{m-1} \in N$ be the primitive generators of the 1-dimensional cones of Σ . Without loss of generality, we assume that, for $i = 0, 1, \ldots, m-1$,

$$v_i = (w_i, 1) \in N$$

for some $w_i \in \mathbb{Z}^{n-1}$ and $w_0 = 0$. Also, following Gross [22], we assume that the fan Σ has convex support so that X is a crepant resolution of an affine toric variety with Gorenstein canonical singularities.

The Picard number of X is equal to l := m - n. Let $\{p_1, \ldots, p_l\}$ be an nef basis of $H^2(X; \mathbb{Z})$ and let $\{\gamma_1, \ldots, \gamma_l\} \subset H_2(X; \mathbb{Z}) \cong \mathbb{Z}^l$ be the dual basis. Each 2-cycle γ_a corresponds to an integral relation

$$\sum_{i=0}^{m-1} Q_i^a v_i = 0,$$

where $Q^a := (Q_0^a, Q_1^a, \dots, Q_{m-1}^a) \in \mathbb{Z}^m$. We equip X with a toric symplectic structure ω and regard (X, ω) as a Kähler manifold. We also complexify the Kähler class by adding a B-field $\mathbf{i}B \in H^2(X, \mathbf{i}\mathbb{R})$ and setting $\omega_{\mathbb{C}} = \omega + \mathbf{i}B$.

An important class of examples of toric Calabi–Yau manifolds is given by the total spaces of the canonical line bundles K_Y over compact toric Fano manifolds Y, e.g. $K_{\mathbb{P}^2} = \mathcal{O}_{\mathbb{P}^2}(-3)$.

In [8], Leung and the first two authors of this paper study local mirror symmetry for a toric Calabi–Yau manifold X from the viewpoint of the SYZ conjecture [36]. Starting with a special Lagrangian torus fibration (the Gross fibration) on X, we construct the SYZ mirror of X using T-duality modified by instanton corrections and wall-crossing, generalizing the constructions of Auroux [3,4]. The result is given by the following family of noncompact Calabi–Yau manifolds [8, Theorem 4.37] (see also [2, Section 7]):

$$\check{X} = \left\{ (u, v, z_1, \dots, z_{n-1}) \in \mathbb{C}^2 \times (\mathbb{C}^\times)^{n-1} \mid uv = \sum_{i=0}^{m-1} (1 + \delta_i(q)) C_i z^{w_i} \right\},$$
(1.1)

Download English Version:

https://daneshyari.com/en/article/6425763

Download Persian Version:

https://daneshyari.com/article/6425763

<u>Daneshyari.com</u>