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Abstract

We introduce the idea of representation stability (and several variations) for a sequence of representa-
tions V;, of groups G,. A central application of the new viewpoint we introduce here is the importation
of representation theory into the study of homological stability. This makes it possible to extend clas-
sical theorems of homological stability to a much broader variety of examples. Representation stability
also provides a framework in which to find and to predict patterns, from classical representation theory
(Littlewood—Richardson and Murnaghan rules, stability of Schur functors), to cohomology of groups (pure
braid, Torelli and congruence groups), to Lie algebras and their homology, to the (equivariant) cohomology
of flag and Schubert varieties, to combinatorics (the (n + pHn-t conjecture). The majority of this paper is
devoted to exposing this phenomenon through examples. In doing this we obtain applications, theorems and
conjectures.

Beyond the discovery of new phenomena, the viewpoint of representation stability can be useful in
solving problems outside the theory. In addition to the applications given in this paper, it is applied by
Church-Ellenberg—Farb (in preparation) [20] to counting problems in number theory and finite group the-
ory. Representation stability is also used by Church (2012) [19] to give broad generalizations and new
proofs of classical homological stability theorems for configuration spaces on oriented manifolds.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we introduce the idea of representation stability (and several variations) for a
sequence of representations V,, of groups G,. A central application of the new viewpoint we
introduce here is the importation of representation theory into the study of homological stability.
This make it possible to extend classical theorems of homological stability to a much broader
variety of examples. Representation stability also provides a framework in which to find and to
predict patterns, from classical representation theory (Littlewood—Richardson and Murnaghan
rules, stability of Schur functors), to cohomology of groups (pure braid, Torelli and congruence
groups), to Lie algebras and their homology, to the (equivariant) cohomology of flag and Schubert
varieties, to combinatorics (the (n 4+ 1)"~! conjecture). The majority of this paper is devoted to
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